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Abstract. The traditional Enterprise Service Bus (ESB) supports Ser-
vice Oriented Architecture (SOA) providing faster and cheaper integra-
tion of existing IT systems. ESB technology has been arisen from such
principles like Enterprise Application Integration (EAI), but it is still not
sufficient to satisfy SOA requirements with respect to governance. Ven-
dors of ESB did not adopt a single specification and this creates prob-
lems with enterprise-wide harmonization of governance process. This is
motivation for extended ESB model being Modern SOA Infrastructure.
The study introduces extended ESB model, which encompasses among
others such aspects like: concept of adaptive ESB, monitoring patterns
for distributed ESB environment, adaptive services, and BPEL engine
monitoring and governance. This model positions ESB as a intermedi-
ary technology for providing core and extended functions, making it easier
to use in world-wide IT environments.

Key words: Enterprise Service Bus, services monitoring, QoS manage-
ment, services adaptability

1 Introduction

The Enterprise Service Bus (ESB) is a natural evolution and convergence of
Enterprise Application Integration (EAI) and Message Oriented Middleware
(MOM) implementing the Java Message Service (JMS). It is also inspired by
the Web Service technology, leading to the following traditional definition [1]:
ESB is an intermediary that makes a set of reusable business services widely
available.

The traditional ESB leverages technology advancements in the scope of the
presented platforms, in order to establish a distinct form of middleware that can:
(i) support Service Oriented Architecture (SOA) integration requirements, (ii)
avoid vendor lock-in by utilizing industry standards, and (iii) standardize inte-
gration by utilizing broker functions and cross-application communication based
on open standards. Some of the early implementations of ESB were constructed
around these principles.
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As a whole, traditional ESB implementations are divergent from the typical
deployment descriptor/packaging standard. This is due to the fact that ESB ven-
dors did not adopt a single specification such as e.g. Java Business Integration
(JBI) proposed for Java-based ESB implementation, leading to situations where
multiple ESBs are deployed within enterprise boundaries. Some implementations
are specific to a business unit or application while others are tasked with exter-
nal communications. This creates problems with enterprise-wide harmonization
when attempting to distribute operations and configuration responsibilities in
order to enable collective governance. A good example is the increasing role
of OSGi which applies the service orientation principles within the boundary
of a single JVM, or the Service Component Architecture (SCA) accepted as a
common framework for wiring components together.

In this context the traditional ESB does not satisfy all SOA requirements
with respect to governance, regardless of the middleware or technologies used
to implement and host services. Expectations in this area are growing as large
enterprises have recently begun to exploit the ESB Federation concept. This
leads to an extended ESB model, defined as follows [2]: ESB is an intermediary
that provides core functions, making a set of reusable services widely available
along with extended functions that simplify the use of the ESB in real-world IT
environments.

The goal of this chapter is to present the most important aspects of extended
ESB as a modern SOA infrastructure and to summarize the work performed in
this area by the DCS (Department of Computer Science) team at AGH UST.
Extended ESB is investigated in reference to the SOA Solution Stack proposed
by IBM. This clarifies the role of integration technologies in SOA-based system
construction and deployment. We introduce extended ESB technologies as ele-
ments of the ESB compound pattern [3]. The functionality of each element of this
pattern is briefly specified, creating a foundation for the more detailed analysis
presented in subsequent sections. The concept of adaptive ESB is introduced as
a key aspect of the presented study. Detailed analysis of the adaptive ESB re-
quirements leads to specification of its architectural and functional models. The
proposed models facilitate definition of mechanisms necessary for implementing
adaptive ESB. As these mechanisms cover the most important aspects of ESB
governance, they are very much in line with the functionality of extended ESB.
Monitoring ESB activity is also described, as it plays a fundamental role in mak-
ing governance decisions. The proposed monitoring system is very generic and
refers not only to JBI-compliant ESB monitoring but also OSGi service tracing.
The mechanisms required by adaptability strategies are described in Section 6. A
related concept is the construction of adaptive services. Such services, based on
the Service Component Architecture, are proposed in Section 7. Suitable exten-
sions of the SCA execution infrastructure are implemented for this purpose. As
orchestration processes play a crucial role in the development and deployment of
SOA applications, BPEL engine monitoring and governance is also investigated.
The proposed solution is presented in Section 8. Finally, since ESB is an inte-
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gration technology originating from MOM, the problem of message brokering is
analysed.

2 SOA Solution Stack reference model

SOA application development and deployment should be considered in the con-
text of the SOA Solution Stack (S3) proposed by IBM, which provides a detailed
architectural definition of SOA split into nine layers. This model is depicted in
Fig. 1. Each layer has a logical and physical aspect. The logical aspect includes
all the architectural building blocks, design decisions, options, key performance
indicators, and so on. The physical aspect covers the applicability of each logical
aspect in reference to specific technologies and products and is out of scope of
our analysis.
The S3 model is based on two general assumptions:

— The existence of a set of service requirements that are both functional and
nonfunctional and collectively establish the SOA objective. Nonfunctional
service aspects include security, availability, reliability, manageability, scala-
bility, latency, and the like.

— A single layer or some combination of layers can fulfill specific service re-
quirements and for each layer the service requirements are satisfied by a
specific mechanism.
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Fig.1: SOA Solution Stack Model

The nine layers of the S3 stack are as follows: Operating Systems, Service
Components, Services, Business Process, Consumer, Integration, QoS, Informa-
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tion Architecture, and Governance and Policies. There is no separate layer for
business rules. Rather, business rules cut across all layers. The business process
and governance layers intersect in defining the rules and policies for a given
business process.

A brief characteristic of each layer is presented below as a background for
further discussions contained in this chapter.

Operating systems - This layer includes all application and hardware as-
sets running in an IT operating environment that supports business activities
(whether custom, semicustom, or off-the-shelf). Because the layer consists of
existing application software systems, implementing the SOA solution leverages
existing I'T assets. Nowadays this layer includes a virtualized IT infrastructure
that results in improved resource manageability and utilization.

Service components - This layer contains software components, each of
which is the incarnation of a service or operation on a service. Service components
reflect both the functionality and QoS for each service they represent. Each
service component:

— provides an enforcement point for ensuring QoS and service-level agreements;
— flexibly supports the composition and layering of IT services;
— hides low-level implementation details from consumers.

In effect, the service component layer ensures proper alignment of IT imple-
mentations with service descriptions.

Services - The service layer consists of all the services defined within SOA.
In the broadest sense, services are what providers offer and what consumers or
service requesters use. In S3, however, a service is defined as an abstract speci-
fication of one or more business-aligned IT functions. The specification provides
consumers with sufficient detail to invoke the business functions exposed by a
service provider — ideally in a way that is platform independent. Each service
specification must include:

— an interface specification - a collection of operation signatures;

— service endpoint information - the network location to which invocation mes-
sages are sent;

— invocation protocol details;

— service semantics, such as measurement units and business context.

It is necessary to point out that services are implemented by assembling
components exposed by the Service Component layer. The Service Component
Architecture plays an important role within this layer as a promising concept.

Business process - In this layer, the organization assembles the services
exposed in the Services layer into composite services that are analogous to key
business processes. In the non-SOA world, these business processes are similar to
custom applications. On the other hand, SOA supports application construction
by introducing a composite service that orchestrates the information flow among
a set of services and human actors.
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Consumer - The consumer layer handles interaction with the user or with
other programs in the SOA ecosystem.

Integration - This layer integrates layers 2 through 4. Its integration ca-
pabilities enable mediation, routing and transporting service requests from the
service requester to the correct service provider. These capabilities include, but
are not limited to, those found in ESB and will be further explained in the
following sections.

Quality of service - Certain characteristics inherent in SOA exacerbate
well-known IT QoS concerns: increased virtualization, loose coupling, composi-
tion of federated services, heterogeneous computing infrastructures, decentral-
ized service-level agreements, the need to aggregate IT QoS metrics to produce
business metrics, and so on. As a result, SOA clearly requires suitable QoS gov-
ernance mechanisms.

Information architecture - This layer encompasses key considerations af-
fecting data and information architectures required to develop business intelli-
gence through data marts and warehouses. The layer includes stored metadata
content required for data interpretation.

Governance and policies - The governance and policies layer covers all
aspects of managing the business operations’ lifecycle. This layer includes all
policies, from manual governance to autonomous policy enforcement. It provides
guidance and policies for managing service-level agreements, including capacity,
performance, security, and monitoring. As such, the governance and policies layer
can be superimposed onto all other S3 layers. From a QoS and performance met-
ric perspective, it is tightly connected to the QoS layer. The layer’s governance
framework includes service-level agreements based on QoS and key process in-
dicators, a set of capacity planning and performance management policies to
design and tune SOA solutions as well as specific security-enabling guidelines
for composite applications.

3 Extended ESB functionality

The presented S3 model provides a general landscape for the extended ESB
functionality specification.

This functionality emerges even more clearly in the context of ESB Fed-
erations used by large enterprises. An ESB Federation consists of many ESB
instances which are organized into several overarching groups:

— working with service units - focus on loose coupling;

— working with networks - focus on resource virtualization;

— linking services together - focus on agile composition;

— doing 1-3 economically - focus on scalability across several dimensions;
enabling new offerings based on the new technology - focus on the future.

As enterprises deploy multiple ESB instances, they need to provide an infras-
tructure to manage, secure, mediate, and govern these instances. The capabilities
inherent in an ESB Federation solution are delivered through a standards-based
SOA infrastructure. These capabilities include:
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Security - ensuring the privacy, authenticity, authorization, non-repudiation
and auditing of all messages moving within and between ESB instances and
other service-oriented applications. This also includes decoupling of the se-
curity management model from the application programming model;
Mediation - many applications and ESB instances will use and support dif-
ferent standard protocols and technologies along with different invocation,
synchronicity, reliability, and security models. An ESB Federation solution
provides policy-based mediation between the various synchronicity, reliabil-
ity, programming and security models, technologies, messaging styles and
standards, ensuring seamless interoperability.

Management - as ESB instances proliferate, enterprises will require a holistic
view of the transactions that traverse their platforms and applications. An
ESB Federation solution provides monitoring, management, SLA and alert
reporting capabilities for all managed platforms including ESB instances.
Governance - the ESB Federation solution provides a consistent policy defini-
tion, implementation, administration, management and enforcement mecha-
nism for all SOA-enabled platforms and ESB instances within the enterprise.
It verifies that all services implement and enforce the same set of policies,
and can comply with the policies that will be enforced downstream.

The ESB Federation solution is an infrastructure solution. It is not an ESB

for multiple ESB instances - rather, it simply provides core policy-based infras-
tructure services for heterogeneous ESB instances. A successful deployment of
the ESB Federation requires the presence of suitable capabilities in each ESB
instance.

The list of core functions which provide the basic operational capabilities of

the ESB is rather long;:

== e

© 0N W

Support for multiple protocols;

Protocol conversion;

Data transformation and data-based routing;

Support for multiple connectivity options;

Support for composite services through lightweight orchestration;
Support for multiple standard business file formats;

Integrated security features;

Comprehensive error handling mechanisms;

Support for both synchronous and asynchronous operations;
Highly available and scalable infrastructure;

. Support for many options in each of the above categories;
. Extensibility.

Extended functions are those ESB capabilities that lie beyond the operational
machinery listed above. They make services widely available to consumers and
offer broad support for SOA application development, provisioning and running.
Development of these extended functions is currently the focus of attention by
ESB vendors. Fig. 2 summarizes the most important extended functions.
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Fig. 2: Core and extended ESB functions

A more detailed specification of these functions is presented in Table 1. It is
necessary to point out that many related requirements are still not fully satisfied
and require further research. The following sections elaborate on this issue in
more detail.

From the software engineering point of view ESB can be treated as a Com-
pound Design Pattern which in turn represents collection-related patterns. The
relationship between these patterns is immaterial as compound patterns focus
on results of their combined applications. A compound pattern represents a set
of patterns that are applied together to a particular application in order to
establish a set of design characteristics.

Fig. 3 shows the ESB compound design pattern. It is fairly complex as it
comprises other patterns (such as the Service Broker) which are also compound
patterns. Moreover, the ESB pattern can be considered an element of the Canon-
ical Schema Bus. Patterns connected by solid lines represent the core function-
ality of ESB, while remaining patterns address extended ESB capabilities. The
functions of extended ESB, as shown in Table 1, cover the orchestration process.
This leads to the conclusion that the extended ESB compound pattern should be
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Function name

Requirements

Graphical editing tools

Graphical editors for ESB flows such as itineraries
or lightweight orchestration.

SLA monitoring and management

Reporting and registration of QoS and QoE. Load
balancing to meet SLA. Endpoint security and man-
agement.

BPEL and other business process

support

Design, simulation, and execution of business pro-
cesses using BPEL.

BPEL engine activity monitoring

Business activity monitoring (BAM) Definition of
business-centric metrics (KPI) and their presenta-
tion in near-real time. Generating alerts when KPIs
cross specified thresholds.

Service lifecycle management

Service definition, implementation and installation.

Dynamic service provisioning

Dynamical provisioning of new ESB operations.
Modification of flows without restarting ESB com-
ponents. Dynamic control over the number of run-
ning service instances in accordance with SLA tar-
gets.

Complex event processing (CEP)

Ability to define and recognize complex events dur-
ing business process execution.

Business rule engine (BRE)

Ability to specify and impose policies related to
business or system activity. Easy integration with
CEP and EDA (Event-Driven Architecture).

Table 1: Extended ESB functions
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Fig. 3: ESB compound design pattern
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further enhanced with Orchestration compound patterns, which play a crucial
role in SOA.

4 Model of adaptive ESB

The detailed analysis of SOA infrastructures presented in the previous sections
shows that its elements should offer some level of adaptability. In fact, adapt-
ability looms as a dominant aspect, cutting across all extended ESB functions.
An 83 Layer is defined as a set of components, such as architectural building
blocks, architectural decisions and interactions among components and layers.
This definition emphasizes the existence of many options that can be subjected
to architectural decisions taken during the SOA application design phase or
postponed until runtime. A generic structure of an adaptive ESB functional ele-
ment is shown in Fig. 4. The policy engine perceives the system as an abstraction
exposed by the exposition layer and is able to perform a set of actions on this ab-
straction. The abstraction can be defined as a complex service execution model,
or a simple set of services involved in execution. In both cases an adaptation
policy has to be defined. This policy is used to represent a set of considerations,
guiding decisions. Each adaptation policy may express different goals of system
adaptation, such as minimizing system maintenance costs or ensuring particular
QoS parameters.

Policy
Engine

Exposition

Instrumentation

ESB Functional Element

Fig.4: Adaptive ESB functional elements

Design-time decisions cannot, however, take into account every context of
service execution and lower-layer architectural configuration. Hence, runtime
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architectural decision processing is particularly important for the S3 stack. Each
layer must therefore be equipped with suitable adaptability mechanisms enabling
the enforcement of these decisions.

System Elements

The Adaptive ESB functional element is constructed around the well-known
closed loop control schema. A fundamental part of this element is the adaptabil-
ity loop which consists of the following blocks:

— Instrumentation — the Enterprise Service Bus is enriched with additional
elements that gather monitoring data from the ESB and perform adaptabil-
ity operations;

— Monitoring — determines system state and traces monitoring service invo-
cations. The stream of monitoring data is processed by the Complex Event
Processor and listeners are notified of complex monitoring events. The mon-
itoring layer exposes sensors for the Ezposition layer;

— Management — components used to manage the execution of services de-
ployed in the ESB and for lifecycle management of interceptors. The man-
agement layer exposes effectors for the Fxposition layer.

— Exposition — components that expose the state and events occurring in the
ESB as facts for the Policy Engine Layer. This layer also contains compo-
nents used to model system behavior in the model domain;

— Policy Engine — rule engines responsible for service adaptation in order to
meet high-level goals defined as policy rules.

A number of distributed adaptive elements can be managed by a global
Policy Engine in accordance with a high-level strategy. The instrumentation layer
enriches the ESB with additional elements. These elements provide adaptability
transformations necessary to achieve adaptive ESB and are described in the
following sections. The monitoring layer is responsible for supplying notifications
of events occurring in the execution environment. As the volume of monitoring
information gathered from the ESB could overwhelm the Ezposition layer, events
are correlated with one another and notifications are sent only about complex
events. Complex Event Processing can be compared to an inverted database
containing stored statements: as data arrives in real time, these statements are
executed and notifications are sent to registered listeners. The policy engine layer
analyses facts and infers decisions which are then implemented in the execution
environment. Facts representing the state of the system or events occurring in
the system are supplied by the exposition layer.

The approach presented in this section is a model-driven adaptation policy
for the SOA. The system analyzes composite services deployed in the execution
environment and adapts to QoS and QoE changes. The user composes the ap-
plication in a chosen technology and provides an adaptation policy along with a
service execution model. The architecture-specific service composition layer con-
tinuously modifies the deployed service in order to enforce the adaptation policy.
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The abstract plan, providing input for architecture-specific service composition,
can be hidden and used only by IT specialists during application development.
System behavior is represented by the service execution model.

The composite service execution model is an abstraction of the execution
environment. It covers low-level events and relations between services and ex-
poses them as facts in a model domain for the Policy Engine. Decisions taken
in the model domain are translated to the execution environment domain and
then executed. The Model Analyzer System gathers monitoring data from the
execution environment via monitoring and management agents.

This process can be described as architecture-specific service composition
adaptation that is performed in order to achieve the required value of QoS or
QoE guided by the adaptation policy. The adaptation loop addresses service
selection, binding protocol and interaction policy choices. Thus, the adaptability
process mainly concerns integration mechanisms.

5 ESB monitoring

The service orientation paradigm enables IT architects to identify independent
parts of business logic and expose them as services. Additional service design
methodologies [4] classify services into types and hierarchies, stressing the most
important service attribute: composability. The composability of services sig-
nificantly increases the potential size to which a fully operational service-based
enterprise system can be extended. In order to provide sufficient adaptability to
constant changes in business requirements occurring in such large and complex
infrastructures, proper monitoring mechanisms have to be introduced. The En-
terprise Service Bus is the most frequently used design pattern for enterprise ser-
vice backbones. Therefore, ESB monitoring is a vital element of service-oriented
IT systems and is essential for the Adaptive ESB Model (cf. Figure 4). This sec-
tion defines the goal of ESB monitoring and presents the problems which have
to be solved in its context.

ESB monitoring background

Our study focuses on the SOA paradigm realized using Java-centric technologies;
therefore we will focus on OSGi [5] and Java Business Integration (JBI) [6]. JBI
is a Java-centric standardization of the ESB pattern while OSGi introduces a
dynamic service-oriented modularization model in the context of a single JVM
process. OSGi adds significant flexibility by transforming the flat dependency
space into a well-structured hierarchical one and by introducing dynamic single-
process service repositories. OSGi is often referred to as single-process SOA [7].
The JBI specification has not been widely adopted [8] and currently provides a
point of reference rather than an actual ESB implementation standard. Modern
ESB infrastructures tend to take OSGi as the basis for single-process SOA and
extend it, by means of federations [9], to a distributed service backbone. There-
fore our study begins with a definition of OSGi monitoring and assumes JBI
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as a point of reference in the construction of monitoring mechanisms for ESB
Federations. Figure 5 depicts the structure of monitoring in a service-oriented
environment. Monitoring is divided into domains and perspectives. The infras-
tructure domain refers to monitoring of the system environment with focus on
attributes of the operating system and any virtualization layer between the OS
and actual hardware. The platform domain relates to the platform on which
the container of a higher domain is executed. JVM monitoring is the subject of
the JVM platform domain on which this study focuses. The container domain
is the actual element where the system part of OSGi and ESB monitoring is
located. The monitoring of application-related service attributes takes place in
the application domain and further evolves into monitoring of important Key
Performance Indicators [10] in the business domain.

Fig. 5: Monitoring layers in a service-oriented environment

Thus ESB-based SOA monitoring spans the following domains: container
(system monitoring), application (application monitoring) and business (busi-
ness activity monitoring (BAM) [11]). In all domains monitoring can be per-
formed either from the consumer’s or provider’s perspective. For ESB monitor-
ing, both perspectives are important. The presented monitoring structure can
be mapped onto layers of the S3 model (cf. Figure 1). The container domain
corresponds to S3 Service Components and Integration, while application and
business domains are counterparts of S3 Services and Business Processes.

The goal of the presented ESB monitoring is to provide a complete solution
for monitoring of both perspectives in the three ESB domains. The functional
requirements of ESB monitoring can be summarized as follows:

— Gathering complete information on the OSGi and ESB level: monitoring
service deployment — current service topology as well as service invocation
parameters.



ESB - Modern SOA Infrastructure 13

— Applying a design which enables transformation of system-level monitoring
information with no semantics into enriched information providing business
value.

— Ensuring flexible, declarative monitoring target specification, which can be
changed at any time.

— Monitoring should adapt to changes in the distributed ESB environment in
order to ensure fulfilment of the defined goals.

In addition to functional requirements there is also a set of nonfunctional de-
sign assumptions which influence the architecture to a significant degree. These
assumptions are tightly related to the monitoring scenario concept, which spec-
ifies the desired monitoring outcome from the user’s point of view (the following
section provides more details about monitoring scenarios). The nonfunctional
assumptions are as follows:

— Monitoring has to be selective: only information required to implement mon-
itoring scenarios at a given should be gathered.

— Monitoring mechanisms should not influence the performance of elements
which are not currently monitored and any performance deterioration of
monitored elements should be minimal.

— Monitoring data should be propagated only to locations which are needed
to realize a given monitoring scenario.

— System reconfiguration in response to changes in monitoring scenario defi-
nitions should not take longer than several seconds.

These requirements outline a large problem space which has to be explored.
The most challenging aspects are selectivity and business activity monitoring.
In order to satisfy selectivity requirements, the described approach introduces a
methodology for mapping the monitoring scenario to a proper configuration of
interceptors (cf. next section) which collect monitoring data. The first attempt
at implementing BAM focuses on enriching the monitoring scenario with a busi-
ness context and introduces interceptors capable of providing information with
business value.

Monitoring model

The general outline of ESB and OSGi monitoring, described in the previous
section, introduces the need for monitoring scenarios. To describe such scenarios
in compliance with all stated requirements the following aspects of ESB and
OSGi monitoring have to be considered:

— topology monitoring - refers to monitoring service topologies, gathering in-
formation about topology changes in federated containers;

— parameter monitoring - gathering the values of predefined metrics such as
performance, reliability, composability etc. Each metric installed in any of
the containers introduces a set of attributes which have to be defined in
order to gather monitoring data;
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— content monitoring - refers to monitoring particular service invocation pa-
rameters or business application errors.

In order to specify a monitoring scenario two steps have to be performed.
First, the topology of the monitored container must be acquired. It is impossible
to specify a monitoring scenario without proper information about its current
topology state. In accordance with these assumptions, a scenario definition en-
compasses topology elements for which the scenario will be applied. Such a spec-
ification may be represented by a set of patterns, matching particular topology
elements to their names. The second step of scenario specification is to define
a metric which will be applied to the predetermined topology elements. Each
metric has an individual set of parameters. Information about the values of se-
lected parameters has to be included in the monitoring scenario definition. One
monitoring scenario can contain many metrics and topology elements — each pair
is called a monitoring subscription.

Having defined a monitoring scenario, we need to specify a mechanism capa-
ble of flexibly plugging into the monitoring logic of OSGi and ESB. The proposed
model introduces a non-invasive mechanism called the interceptor socket. In both
cases, such a component must provide functionality for plugging interceptors and
providing them with monitoring data. The interceptor socket is an element which
enables the monitoring system to be dynamically connected to the monitored en-
vironment. It seems reasonable to state that in the ESB environment interceptor
socket mechanisms have to be capable of processing messages passed to services
installed in a container. In the latter case we need to ensure that service invoca-
tions are intercepted along with their context (i.e. invocation parameters). Such
a unified approach for both OSGi and ESB containers enables dynamic man-
agement and installation of interceptors. As can be seen in fig. 6, interceptors
installed in sockets feed monitoring data to higher-level monitoring logic through
the monitoring backbone. This backbone is one of the core components in every
distributed monitoring system and can be the subject of extensive analysis.

In order to describe the possible methods of creating interceptor chains it is
first necessary to describe what an interceptor is. The presented study introduces
the concept of Interceptor as a Service (IaaS). The OSGi-based IaaS realization
facilitates reconfiguration and management of interceptors while fulfiling one of
the most important nonfunctional assumptions, i.e. selectivity of the monitsoring
model. Service-oriented interceptors can be divided into two groups: agnostic and
business interceptors. The former category defines interceptors which do not need
to analyze invocation parameters (content), but instead focus on information
gathered from the invocation context (e.g. the processing time of a particular
service). The latter category defines business interceptors which analyze content
(service parameters in OSGi or message content in ESB) and process such data
in accordance with the implemented business logic. These two categories are
organized into separate chains. Each chain is an ordered list of interceptors with
a defined sorting strategy. It determines the order in which interceptors process
data and pass monitoring results to the backbone.
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Fig. 6: Connection between the monitored environment and the monitoring back-
bone

The presented interceptors need to be created and configured in accordance
with monitoring scenario details. Monitoring subscriptions of the current sce-
nario are installed in the monitoring environment and serve as a basis for the
creation and configuration of interceptor chains. Special interceptor configura-
tions can cover services which do not exist at subscription time. If a new service
is activated and matches a given topological pattern, there is no need for recon-
figuration. Such a service can be automatically monitored in accordance with
specified metrics. Monitoring scenarios allow flexible transformation of business
domain monitoring goals into low-level system monitoring configurations. The
business analyst has to specify a set of monitoring scenarios which have to be
implemented in order to extract business domain data from system events. Those
scenarios, along with sets of monitoring subscriptions, are propagated through-
out the distributed ESB.

The most important (and most problematic) aspect is the distribution of
specific monitoring scenarios in the distributed ESB environment. They not
only have to be periodically propagated (in order to publish changes), but also
synchronized to maintain the consistency of monitoring scenario definitions. On
the other hand, as described in the previous section, the solution must ensure
selectiveness of monitoring capabilities. Fulfiling those goals is not an easy task
and must be approached with care. Those aspects, along with the monitoring
backbone design architecture (described earlier), will be the main direction of
future work originating from the presented study and aiming at implementation
of BAM in a Federated ESB environment.
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6 ESB adaptation mechanisms

Monitoring ESB allows management actions to be performed. The presented
concepts cover selected issues related to improving communication over ESB
by separating traffic into several flows, which can then be independently han-
dled. This leads to increased scalability and is required by many aspects of
infrastructural functionality, including monitoring, data collection, management
information distribution and security considerations.

The proposed mechanisms are compliant with existing integration technolo-
gies. Interceptor mechanisms enable dynamic control of service or component
invocation, along with sensors and effectors necessary to close the adaptation
loop.

As mentioned earlier, the Enterprise Service Bus is an integration technol-
ogy that allows architects to compose applications with services using various
communication protocols. ESB provides mechanisms for message normalization
and routing between selected components. The proposed adaptation mechanism
provides elements necessary to close the control loop for ESB. It is used for
compositional adaptation in systems which modify service composition while re-
taining their overall functionality. ESB is suitable for implementation of such
adaptation, since one can modify message flows between components in accor-
dance with high-level goals.

Sensors

An adaptive system should adapt itself in accordance to various goals, requiring
several types of information from ESB. In most cases, this information will be
disjunctive, so one would expect to deploy specialized types of sensors rather
than generic ones. Interceptor design patterns fulfil these requirements, allowing
interceptors to be deployed or undeployed at runtime.

A message is created in a service, passes through the specialized Service
Engine and is sent to the Normalized Message Router (NMR), which reroutes
it to a particular destination through the same components. Common usage of
this concept includes:

— QoS Measuring — the functionality of monitoring interceptors is not lim-
ited to creating copies of messages sent through them, but may include more
complex tasks, providing quantitative information related to service invoca-
tion. In the QoS interceptor, a message sent to a service is stored in the
internal memory of the interceptor. When a response is generated, the pre-
vious message is correlated and response time is evaluated;

— Tagging/Filtering — interceptors are commonly used for message tagging
and filtering;

— VESB - it is possible to implement the Virtual ESB (VESB) pattern which
can be compared to solutions currently used in computer network traffic
management, such as VLAN[12].



ESB - Modern SOA Infrastructure 17

Effectors

Adaptive software has to adapt itself to changes in the execution environment.
This adaptation requires performing actions (via effectors) that modify the exe-
cution characteristics of a system. For any sort of system, a set of operations has
to be defined, along with places where these modifications should be introduced.
It has been found that modifying message routes can affect the adaptation of
complex services deployed in the ESB.

Rerouting messages to other instances is justified only when these instances
share the same interface and provide identical functionality. Current implemen-
tations of ESB that are compliant with the JBI specification share some common
attributes used in the course of message processing. Each invocation of a com-
plex service is described by its CID (Correlation ID) and is constant for one
invocation, even when passed among services. A particular message sent be-
tween services is described by an EID (Exchange ID). Generally speaking, the
invocation of a complex service is described by a CID and consists of several
message exchanges described by an EID. Extending the Normalized Message
Router with a routing algorithm able to modify message routing would yield an
adaptive ESB.

Routing Algorithm Once the message reaches the NMR, the routing algo-
rithm relies on matching the message to routing rules in the routing table. If the
message matches a routing rule, that rule is fired and the Service Name from the
routing rule substitutes the intended destination Service Name. Routing rules
are split into groups with different priorities, analyzed in a particular order. In
every message, parameters such as VESB tag, Correlation ID, intended Service
Name and Exchange ID are matched to routing rules. If the message matches
several rules, one of them is selected on a round-robin basis to provide load
balancing.

A
Client grouping VESB
Service Invocation Correlation ID
Level of Routing
abstraction Instance selection Service Name criteria
Single message Exchange ID
exchange

Fig. 7: Abstraction level of message flow

Rule priorities are assigned in accordance with the abstraction levels depicted
in Fig.7. Rules are analysed in the order of increasing priority values.
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Priority VESB CID Intentional EID Decision
Service Name
1 n/a n/a n/a + Service Name
2 n/a + + n/a Service Name
3 + n/a + n/a Service Name
4 n/a n/a + n/a Service Name
5 n/a + n/a n/a Service Name
6 + n/a n/a n/a Service Name
7 n/a n/a n/a n/a Service Name

Fig.8: NMR routing table

Depending on the priority value, different parameters are matched. The pre-
sented matching criteria are summarized in Fig.8. The lower the priority value
the more important the routing rule. Some attributes are omitted when process-
ing rules, although each routing rule returns a Service Name as a result. The
decision element which closes the adaptation loop presented in chapter 2 gathers
information about VESB from sensors and uses effectors to dynamically modify
the routing table at runtime.

7 Adaptive Components

Adaptive Components are used in the extended ESB model to provide adapt-
ability for the Service Component layer, as described in the SOA Solution Stack
model. The main goal of Adaptive Components is to provide a background for
creating atomic services used by upper layers.

In SOA systems, atomic services are mainly comprised of components. The
need to ensure implementation and communication protocol independence forces
the selection of an independent integration environment. The Service Component
Architecture (SCA) specification [13] provides such a solution. It supports several
component implementations (such as Java, C+4, BPEL and Spring) as well as
various communication protocols (Web Services, RMI and JMS). Moreover, it
is highly extensible, as evidenced by different SCA implementations [14] which
introduce additional technologies not covered by the original blueprint.

It should be noted, however, that the SCA specification lacks adaptability
mechanisms which play a crucial role in ensuring conformance between the pro-
vided services and changing user requirements (i.e. Quality of Service). This
section describes adaptability mechanisms introduced into the SCA specifica-
tion.

SCA Adaptability Requirements

The SCA specification involves the concept of a composite which consists of a set
of components connected by wires. A wire consists of a service representing the
functionality exposed by one component, a reference representing the function-
ality required by another component (delegate object) and a binding protocol
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which represents the communication protocol between the reference and the ser-
vice. Several components in an SCA composite may expose services for external
communication. Such services are further exposed e.g. via ESB.

Services created using SCA composites should be able to adapt to changing
customer requirements and service provider capabilities (such as different CPU
speeds resulting from infrastructure changes etc.) Non-functional customer re-
quirements are recognized as QoS metrics and may be provided by the QoS layer
of the S3 model. On the other hand, the measured service parameters are called
Quality of Experience (QoE), and represent actual capabilities of a service. In
an ideal case, QoE metrics should be as close to QoS requirements as possible.

The presented discussion leads to augmenting component descriptions with
additional information about the provided QoS and monitoring of actual QoE
values during runtime.

Service Model

An SCA composite may be perceived as a directed graph with nodes represented
by components and edges represented by wires (directed from references to ser-
vices), further called a Composition Instance (CI). A Clis connected to a specific
QoE description derived from a composite. A set of Composition Instances, which
meet the same functional requirements and differ only with respect to nonfunc-
tional ones (QoS) is called a Composition. Compositions may also be represented
as directed graphs, created by joining all CIs which provide a given element of
functionality. The rules for joining Cls are as follows: if CI1 and CI2 use the
same component as a specific node, they can be joined; otherwise both need to
be added to the graph. Such a solution reduces the amount of resources required
by all CIs (by exploiting shared nodes) and enables more efficient CI processing.
A sample Composition with a selected Composition Instance is depicted in fig.
9.

Adaptation Mechanisms for SCA

Adaptation of services consisting of components may be perceived as selection
of a proper Composition Instance from those available, in accordance with the
stated QoS requirements and observed QoE values. This leads to a classic adapta-
tion loop which includes monitoring, planning and selecting proper Composition
Instances at runtime.

The SCA specification and its existing implementations do not provide adapt-
ability mechanisms. Likewise, dynamic wire changes are not allowed. To provide
support for changing wires at runtime an interceptor pattern may be used. Once
intercepted, invocations between components may be sent via wires, as deter-
mined by given adaptability policies. Such interceptors may also be used for
monitoring purposes, exposing data flows to other layers in the S3 model. The
SCA monitoring and management functionality is exposed via a specialized Mon-
itoring and Management Interface, further used by the inferring components, as
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Fig. 9: Sample Composition with a selected Composition Instance

Component C”, v,

SCA Composite

described below. A sample Adaptive Component built using enhanced SCA is
depicted in fig. 10

Properties
Monitoring & References
i Management ,
Services interface
! Intérceptors
Implementation (sensors & effectors)

Fig. 10: Adaptive SCA Component

Selecting a Composition Instance which best fits the stated nonfunctional
requirements may be a very complex task, due to the large amount of existing
components (the number of possible Composition Instances rises exponentially
along with the number of existing components in a Composition) and the large
set of rules. Thus, advanced rule engines (RE), such as Drools [15] or JESS [16],
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can be used. Applying REs to selecting Cls provides a policy enforcement point
and simplifies the S3 Policies layer.

Further Work

Adaptive Components are a basis for further work with the aim of enhancing
existing component descriptions to automatically generate Compositions based
on semantic descriptions. Such descriptions should contain information about
functional component capabilities, similar to the OWL-S [17] standard used in
the Web Services environment. Starting with a custom-defined goal, a service
should be built from components and further adapted using the mechanisms
described above.

8 BPEL monitoring

The IBM S3 model [18] places business processes near the top of the stack, in di-
rect support of customer needs. Such processes hide the complexity of lower-level
services and components. According to the Workflow Management Coalition [19]
a business process is a set of one or more procedures realizing common business
aims or policies, usually in the context of an organizational role and dependency
structure. BPM (Business Process Management) [20] systems usually exploit the
declarative system functionality construction model. They determine aims but
do not state how to achieve them. Some notations, such as BPMN v1.0 (Busi-
ness Process Management Notation), are used to describe the entire process
in abstract terms, while others, like BPEL (Business Process Execution Lan-
guage), BPELj (Business Process Execution Language for Java), XPDL (XML
Process Definition Language) or jJPDL (Java Process Definition Language), can
be automatically run in execution environments called business process engines
[19][20][21]. Currently, the most widely supported business process definition
language seems to be BPEL, with more than ten commercial and open-source
process engine implementation. As SOA orchestration processes are gaining im-
portance, the existing monitoring and governance tools for vendor-specific BPEL
engines lag behind. Therefore, an experimental prototype of a common multi-
vendor distributed monitoring tool has been designed, implemented and vali-
dated.

Existing BPEL design, monitoring and management tools

Existing BPEL execution environments are augmented with sets of tools sim-
plifying the creation, deployment and management of BPEL processes. Most
such environments are based on Eclipse or NetBeans IDEs, with some commer-
cial products claiming to enable process definition over web interfaces. (Results
generally correspond to product prices.) Even though each process definition
tool is dedicated to a particular process execution engine, they generate BPEL-
conformant process definitions which may be run on almost any engine. In the
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area of BPEL process monitoring and management the situation is somewhat
more complex. Almost each engine provides basic business process monitoring
and managements capabilities, sometimes exposed via standardized application
GUIs (e.g. BPELMaestro by Parasoft, WebSphere by IBM) and sometimes ex-
ploiting vendor-specific APIs (Oracle, ApacheODE, Glassfish). The provided
monitoring consoles are not only vendor-specific but also very inconvenient and
unwieldy. They only expose basic information about the running process in-
stances and steps (activities) which the processes actually perform. They rarely
support filtering, data aggregation and bottleneck analysis, even on a basic level.
The following implementations have been investigated in the context of process
monitoring and management: BPEL Process Manager by Oracle, WebSphere
by IBM, ActiveVOS by Active Endpoints, LiquidBPM by Cardiff, BPELMae-
stro by Parasoft, bizZyme by Creative Science Systems, Biztalk by Microsoft,
ApacheODE by Apache nad jJBPM by jBoss. The usability of custom monitoring
GUIs is, at best, disputable. All are limited to parsing data provided by their
own engines; moreover, they do not enable correlations of subprocesses with base
processes and expose only simple query mechanisms based on pull interfaces (if
an API is available at all). Often there is no direct support for selection of mon-
itoring data (only an on/off monitoring switch is exposed, with all the efficiency
drawbacks resulting from collection and storage of unneeded monitoring data).

Motivation

Current BPEL monitoring tools do not fully meet the stated expectations: the
information they provide means nothing for business users and is insufficient
for IT specialists. They have to be rethought and redesigned to address the
needs of particular user groups. A BPEL process definition is more than a sim-
ple blueprint for orchestrating process components - it contains process vari-
ables and structure activities that have business names and meanings. Such
metainformation, combined with process monitoring data, can be presented to
non-technical business users able to validate process correctness from the busi-
ness/customer perspective. This goal cannot be achieved with ESB and OSGi
monitoring, operating at a lower level and presenting complex data in a manner
understandable for IT specialists. In order to efficiently monitor a BPEL pro-
cess, specific monitoring data has to be collected during the entire (usually very
long) process execution cycle. This data should include information about indi-
vidual actions (steps) executed by the process (e.g. execution of a Web Service
method, sequence of operation invocations, conditional instructions, exception
handling, etc.) together with execution time, additional parameters (e.g. Web
Service address), status (e.g. correctly completed, faulty or having generated an
uncaught exception) or even the values of BPEL process variables in the context
of a particular activity. All this information needs to be collected, filtered, stored,
aggregated and presented in a clear and user-friendly way, preferably not specific
to any BPEL engine. As none of the existing tools support such functionality, a
new, extended, multi-vendor, distributed BPEL monitoring tool is needed.
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System Architecture

The architecture of proposed BPEL monitoring system is presented in Fig. 11.
Data acquisition is realized by two cooperating modules instantiated for each
monitored engine: Monitoring Event Manager and Monitoring Event Emitter.
Together, they are responsible for subscription management and data propaga-
tion. Monitoring data is obtained from BPEL engines by the instrumentation
module or via the engine API, depending on its availability and functionality
[22]. The BPEL Management Agent is the main system component, exposing an
interface for management of multiple engines, enabling monitoring data filtering,
exposing process metadata and ensuring historical data access and registration
for monitoring event notifications generated by the BPEL Monitoring Agent.
The responsibility of the BPEL Monitoring Persistence Agent is to store and
query monitoring data and metadata along with the current tool configuration.

BPEL Events subsciption
filtering and quering;

BPEL Events metadata access

BPEL Monitoring BPEL Management
— ‘Agent — Agent 4_|

BPEL Monitoring
i Agent

Monitoring Events Monitoring Events
Emitter Manager

Monitoring data Metadata

reposi repositol
Instrumentation Engine Monitoring API eRlEy (=D

< o
Fig. 11: AS3 - BPEL Monitoring architecture

The proposed BPEL monitoring concept fills, in a natural way, the gap be-
tween current BPEL monitoring tools and existing, extremely expensive commer-
cial BAM (Business Activity Monitoring) solutions. BPEL process monitoring
must not ignore business users as it does today. It has to shift from measuring
low-level, process-specific metrics of BPEL engines (execution time, number of
executed process or faults) to more business-oriented goals (number of processes
with specified business constraints such as the number of orders with a total
amount greater then 100$). The monitoring tools need to enable business users
to trace BPEL process execution, basing not only on the status of a process but
also on its variables and parameters. This is the challenge we intend to overcome.
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9 Messaging

The Enterprise Service Bus, currently recognized as the foremost SOA infras-
tructure implementation, builds upon the concept of message-oriented commu-
nication, i.e. JMS. Asynchronous communication inherent in MOM solutions is
a key enabler for loose coupling and autonomous operation - basic tenets of ser-
vice orientation. In the early implementations of ESB only basic mechanisms
provided by the messaging infrastructure were used. Newer approaches extend
the set of basic capabilities, taking advantage of QoS assurances provided by
messaging solutions.

Communication models and routing

The most frequently used communication model assumes a single recipient. In
such a case, asynchronous message queuing is used, where each participating side
reads incoming messages from a local queue and processes the received data.
Message Exchange Patterns extend this basic approach by defining interaction
schemes in which correlations between groups of messages are introduced. As a
result, even though there is no direct support for synchronous communication, it
can be applied when necessary. Single-receiver delivery is one of two commonly
available possibilities, the other one being the publish-subscribe model. In this
latter case, each message sent by a single publisher is received by a group of
clients which share common interest in the data being produced. The notion of
a topic and optional peristent data delivery discussed in the following paragraphs
provides a high degree of decoupling both in space and time domains.

In addition to basic addressing schemes, more complex mechanisms are avail-
able. JMS extends basic message routing with the notion of message selectors. In
such a case messages are routed on the basis of message header properties. Fur-
thermore, some currently available platforms provide mechanisms for content-
based routing, heavily used in EIA. All of the above mentioned mechanisms can
be used in conjunction with one another. Multipoint data delivery is very cru-
cial from the EDA perspective, where events produced at a source have to be
delivered to all interested parties. Different types of information used for routing
purposes are presented in Fig. 12.

Apart from the basic functionality, message-oriented middleware provides
more advanced capabilities in the form of QoS assurances, summarized in Table
2.

Message Oriented Middleware

Message oriented middleware, as a core part of the SOA infrastructure, plays
a key role in the scope of nonfunctional system properties. In order to enable
advanced functionality, i.e. 5, the communication infrastructure should be ap-
propriately constructed. From the system’s point of view, MOM can be seen as a
network of interconnected brokering nodes. The properties of such a network and
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Fig. 12: Information used for message routing

the routing algorithms used for message distribution directly affect the overall
system efficiency, scalability and robustness.

In typical scenarios, message-oriented middleware is used for sending mes-
sages which represent asynchronous service requests or generated events. How-
ever, rapid evolution of the SOA paradigm has resulted in additional demands
placed on MOM, including efficient batch data transfer in the many-receivers
model. Publish-subscribe delivery can be seen as application-level implementa-
tion of multicast communication. Apart from local network settings administered
by a single authority, such services are unavailable in the network layer. Cur-
rently supported QoS assurances, such as message ordering and flow control
mechanisms, already enable MOM for batch data delivery. However, in order
to achieve a high level of effectiveness and scalability, the infrastructure has to
be extended with additional mechanisms. One of them is multipathing, where
data is transferred not only along a distribution tree constructed by the messag-
ing middleware but also via additional paths. Extending the basic set of routes
results in accelerated data transfer.

Another MOM enhancement from which data delivery solutions would ben-
efit is caching. Assuming than a certain amount of disk storage is available at
each brokering node, specific data access patterns can be identified. In such a
case data can be cached in nodes close to the clients which most often request
it. In currently available middleware solutions delivery buffers at each brokering
node can be considered a basic caching mechanism. However, in order to provide
suitable QoS, this approach is not satisfactory.

Finally, certain applications demand data transformation services. Prior to
data consumption, clients have to preprocess data that is being sent. Assuming
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Capability Description

Transactions Defined per communication session (in single-
receiver or many-receivers model). Ensures that
messages are sent and received in an all-or-nothing
manner.

Message ordering Specifies message ordering requirements. Some com-
monly available options include preserving the order
of messages sent by a single user and delivered to
every receiving site. Other possibilities include total
ordering of messages or less restrictive casual order.

Persistency Transport-level message persistency which enable
communication even when some receivers are not
currently available. Depending on infrastructure
configuration, in-memory or data storage persis-
tency can be used.

Flow control Ensures that the rate of the message stream pro-
duced by the sender doesn’t exceed the processing
capabilities of the receivers.

Delivery and dispatch policies Policies which specify what measures should be
taken in case of delivery or dispatch failures.

Table 2: Message-oriented middleware QoS summary

that not all clients are able to perform appropriate transformations due to insuf-
ficient hardware resources or available software services, it appears appropriate
to embed such capabilities in the data delivery infrastructure.

10 Summary

SOA application deployment and execution should take into account end-user
requirements expressed as nonfunctional properties. Most of these requirements
refer to QoS, reliability or security aspects which must be enforced during run-
time. As many SOA applications are deployed as collections of communicating
services, their governance should be QoS-aware and mindful of integration as-
pects. This explains the increasing significance of various extensions of the ESB
technology, seen as a cornerstone of modern SOA execution infrastructures. The
place and role of this technology is very well defined by the S3 model. Adaptive
ESB addresses many governance aspects related to nonfunctional requirements.
The proposed mechanisms and their building blocks create a consistent frame-
work which can be further refined according to specific system needs.

The elements of the adaptive ESB framework, such as the monitoring system,
exposition layer and policy engine are generic and can be applied to different lay-
ers of the S3 model. This is evidenced by the SCA extension supporting adaptive
activity and the proposed BEPL monitoring system. The presented study un-
derline the fundamental role of the SOA execution environment and application
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monitoring as a starting point for SOA governance in general. Adaptive systems
enable mature management of dynamic software execution environments.

Another key trend in the emergence of dynamic software systems. A dynamic
system can be modified at runtime, without having to be restarted. This crucial
feature is supported by the OSGi technology as far as Java-based systems are
concerned. The OSGi model, often described as SOA for JVM, matches the
concept of adaptive ESB or SCA. Dynamic software behavior can be further
extended by AOP programming. This technology is very useful for instrumenting
complex software systems such as ESB.

The presented overview can be summarized by stating that the proposed
adaptive system concepts are well supported by modern software tools, opening
a wide area for deployment and uptake by the software industry.
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