
 

 

SLA Monitoring and Management Framework  
for Telecommunication Services 

 
 

Jacek Kosiński, Piotr Nawrocki, Dominik 
Radziszowski, Krzysztof Zieliński, 

Sławomir Zieliński 
AGH University of Science and Technology 

{jgk, piter, radzisz, slawek, kz} 
@ics.agh.edu.pl 

Grzegorz Przybylski, 
 Paweł Wnęk 

 
 Comarch S.A 

pawel.wnek@comarch.com 
grzegorz.przybylski@comarch.pl

 
 

 
Abstract 

 
This paper presents SLA monitoring and 

management framework for telecommunication 
services. The basic requirements of this class of 
systems are specified and verified in context of existing 
SLA standards and tools. The proposed system 
architecture is very general and may interoperate with 
the existing performance monitoring systems and 
management tools. The key design effort is focused on 
the general mapping between observed activities of the 
underlying telecommunication infrastructure elements 
and corresponding SLA instance object state 
construction.  The proposed framework application is 
illustrated by the simple case study.   
 
1. Introduction 
 

SLAM (Service Level Agreement Management) [1] 
is gaining recently increasing attention of telecom 
services providers and customers. Due to progress in 
QoS services provisioning and dynamic interactive 
control and monitoring of telecommunication resources 
the SLA (Service Level Agreement) management is the 
most demanding functionality. From the telecom 
system architecture point of view - SLAM presents 
another layer, operating over monitoring and resource 
control layers and providing more abstract and 
consistent view of services offered to end-users. It is a 
next logical step of the development of these systems, 
connecting together a technical perspective of system 
infrastructure operation with market and user-driven 
business objectives of the telecom company [2,3]. 

SLA in general specifies expectations about the 
provided service quality seen from the end-user 

viewpoint which are expressed as rather aggregated 
metrics defined for the selected time of the service 
provisioning.  Difficulties in SLAM construction and 
implementation are generated by complexity of SLA 
contract metrics representation and on-line, bi-
directional transformation of the business perspective 
to the technical infrastructure operational parameters – 
Fig.1. 

 

Metrics formalization 

Negotiations

Network infrastructure, Monitoring 

SLA Monitoring and Management Framework

SLA Contract 

Business Polices 

Bidirectional transformation of  
QoS parameters into SLA metrics 

 
 

Figure 1. Information flow in SLAM framework 
 
This paper describes SLA monitoring and 

management framework designed and implemented 
under “SLA Management Framework for Telco Service 
Providers” Eureka Project. Successful system 
construction was possible due to preexisting expertise 
and technology in area of QoS monitoring and control 
provided by ComARCH [9]. The most innovative part 
of this research concerns components for monitoring 
layer data transformation and their propagation to SLA 
management subsystem. 



 

 

The structure of the paper is as follows. In Section 2 
short overview of exiting SLA management tools is 
presented. Next in Section 3 SLA metrics are specified 
very briefly. Section 4 describes SLA monitoring and 
management framework requirements. The proposed 
framework architecture is presented in Section 5. 
Finally Section 6 contains SLAM application case 
study. The paper is ended with conclusions. 

 
2. Existing SLA management standards 
and tools 

 
The SLA [1] management tools let enterprise IT 

managers look at network performance the similar way 
the service provider does. SLA management tools such 
as CISCO TMS, ViewGate Networks' Inteligo, 
FireHunter (Agilent) and Oblicore Guarantee are 
typically deployed by the service providers. Often these 
tools are used by the enterprise (via a Web interface), 
allow IT personnel to monitor network performance 
and manage their network SLAs in real time. An 
important aspect of management tools is SLA 
specification language such as WSLA. 

SLA tools should also monitor and manage SLA 
metrics in real time, rather than providing mere 
historical views of past performance. The historical 
information should be saved in the database. This 
section contains very brief overview of leading LSA 
management tools from the functional point of view.  

 
2.1 Total Service Management (Cisco) 

Cisco Total Service Management (TSM) [4] 
delivers on the demands of end-to-end service-level 
management with precise demarcation, per-tunnel 
measurement, and both business-level and detailed 
technical management reporting.  

Cisco TSM mainly focuses on the networking layers 
and makes net-centric SLAM metric information, such 
as round-trip latency, jitter, and response time, 
available to vendor applications dealing with upper and 
lower layers. Thus, TSM makes it possible to create an 
end-to-end solution by integrating cooperative 
applications from best-of-breed vendors.  

The ability to define a service level in a consistent 
and standard way is a key to successful deployment of 
service-level management tools. Cisco intends to 
provide leadership in creating open standards around 
the definition and measurement of SLAs. Cisco SLAM 
implements XML-based data exchange for 
configuration and control of network-layer service-
metric data collection. Cooperating vendor applications 
are able to request SLAM to collect service metrics 
such as round-trip latency, jitter, and response time 

using a standard definition. TSM utilizes Cisco IOS 
embedded technology called Service Assurance Agent 
(SA Agent) to perform network-centric testing of 
services and provide service metric information to 
cooperating applications through a standards-based 
XML interface.  

The Cisco TSM solution is being designed to 
provide both high-level management reports and 
detailed reports for network administrators. This is a 
significant improvement on traditional reporting 
features, which prepared data only for a focused set of 
individuals within an IT department.  
 
2.2 Inteligo Advisor (ViewGate Networks)  

Inteligo Advisor [5] is a service provider tool for 
monitoring service and verifying service-level 
agreements (SLAs). Utilizing artificial-intelligence 
techniques, Inteligo Advisor predicts usage needs for 
virtual private networks (VPNs) and recommends 
service adjustments needed to insure that the service 
definitions are application appropriate. ViewGate 
Network tool also provides real-time SLA compliance 
verification and network-usage anomalies. This 
combination of functionality enables service providers 
to meet SLA, improves their response to changes in 
customer needs, and build greater customer loyalty. 

The Viewgate Inteligo Distributed Information 
Repository maintains Inteligo Advisor VPN-usage 
data. It performs statistical forecasting based on 
historical performance information and compares those 
findings with the customer's SLA. 

If Inteligo Advisor system detects a network-
performance metric (such as jitter) trending toward a 
violation of the SLA, it alerts the customer and service 
provider accordingly. Utilizing an artificial intelligence 
engine, Inteligo Advisor then recommends actions to 
address the predicted network situation. Inteligo 
Advisor's trend analysis enables continual rightsizing of 
the service. Inteligo Advisor also measures service 
performance against the SLA in real-time. It can alert 
service provisioning, traffic-optimization, billing, and 
other operations supported by the system, as well as the 
customer oriented SLA violations and situations where 
violations are imminent. The alert can trigger 
corrective actions, resulting in better service. 

 
2.3 FireHunter (Agilent) 

Agilent's QoS Manager (Firehunter) [6] allows the 
client to monitor service performance and availability 
in real-time for wireless, wireline, switched and packet 
data networks, for a complete picture of service quality 
from your customers' perspective and automated 
management of service level agreements (SLAs). QoS 



 

 

Manager manages a variety of wireless and wireline 
technologies, including GSM, GPRS, UMTS, optical 
and IP. 

QoS Manager's automated SLA management and 
reporting provides the tools for capturing SLA 
requirements from customer contracts and configuring 
the system. The client can automatically create and 
schedule graphical SLA report cards that demonstrate 
compliance with customer contracts and document QoS 
delivered across all services, distributing them in real 
time on customers' secure Web sites.   

The client can use Firehunter to measure, monitor 
and report on Web, e-mail, news, DNS, RADIUS, file 
transfer protocol (FTP), LDAP, Web hosting, mobile 
data and network performance management services. 
The QoS Manager Service Model graphically portrays 
the end-to-end service delivery chain and reflects the 
status of each delivery element. The client can also 
customize the application to add new service models 
and create specialized views and reports.   
 
2.4 Oblicore Guarantee 

Oblicore Guarantee [7] is a complete software 
package that allows proactive, continuous, top-down 
management of Service Level Agreements (SLAs) and 
other important business obligations. This tool is a 
field-proven software suite that allows the client 
organization to meet contractual commitments, service 
level agreements, operational goals, more often and 
more the SLA business logic and compares 
performance objectives to real-time data aggregated 
across the enterprise.  

Guarantee enables real-time, end-to-end service 
level management, supporting SLAs throughout their 
entire lifecycle: creating a service catalog, evaluating 
terms for prospective commitments, managing 
versions, reporting on performance, and calculating 
financial impact. 

 
2.5 WSLA (IBM) 

Web Service Level Agreement [8] language (WSLA 
language) defines assertions of a service provider to 
perform a service according to agreed guarantees for 
IT-level and business process-level service parameters 
such as response time and throughput, and measures to 
be taken in case of deviation and failure to meet the 
asserted service guarantees. The assertions of the 
service provider are based on a detailed definition of 
the service parameters including how basic metrics are 
to be measured in systems and how they are aggregated 
into composite metrics.  

The WSLA language is based on XML; it is defined 
as an XML schema. WSLA can be used by both 

(provider and customer) services to configure their 
respective systems to provide and supervise their 
service. This process is called deployment. Each 
organization uses its own independent deployment 
function that interprets the WSLA and takes 
appropriate action. The deployment step includes 
creation and parameterization of the relevant service 
implementing systems and WSLA supervising services. 
After deployment, supervising services can enact the 
WSLA.  

A very important aspect of WSLA is its capability to 
deal with specifics of particular domains and 
technologies. The language is extensible to include 
specific types of operation descriptions, measurement 
directive types for specific systems, special functions to 
compose aggregate metrics and predicates to evaluate 
specific metrics. The WSLA extension mechanism 
makes use of the ability to create derived types using 
XML schema. By design, the core of the WSLA 
language is very compact. To be of immediate use, the 
WSLA language includes a set of standard extensions. 
It allows WSLA authors to define complete agreements 
that relate to Web services and include guarantees for 
response time, throughput and other common metrics. 
 
3. SLA metrics definitions                                                     
 

The purpose of service level agreements is to 
formally define the parameters of service the provider 
guarantees to deliver. After agreeing upon an SLA, the 
specified parameters are monitored in order to detect 
agreement breaches. One of main issues of SLA 
creation is to define methods of measuring certain 
service parameters that must be agreed upon by both 
sides of the contract. When a SLA breach is detected, 
an appropriate remedy procedure (also defined in the 
contract) is applied. Moreover, the client is eligible to 
get some compensation from the provider. Identifying 
the violations and calculating penalties might prove 
quite challenging. 

In general, a SLA contract can be presented as 
a logical product of predicates built upon results of 
measuring certain service parameters. To make it more 
understandable, the SLA can be expressed as 
a hierarchy of sub-contracts that would eventually be 
expressed as rules defined on the measurement-based 
predicates.  

The SLA Management System (SLAM) relies on a 
monitoring database, which feeds it with the results of 
parameter measurements. The tasks of the SLAM 
systems are to: 

• interpret data provided by a monitoring system 
in context of agreements signed by a particular 



 

 

provider. This functionality includes also 
notifying the provider about unexpected events 
that could lead to an SLA breach before it 
occurs. 

• provide regular reports for the customer 
regarding the SLA parameters [1]. 

• provide data for external systems for 
calculating compensations for SLA breaches. 

The compensations are typically expressed in terms 
of rebates or payment-free periods of service provision 
the client gets in case of contract breach. Although the 
calculation details are covered by the contract, and the 
SLAM system itself is not intended to calculate the 
penalties, a few factors regarding the calculations were 
taken into consideration in the design phase in order 
to point out the data that should be delivered to the 
calculation subsystem. On one hand, to allow 
maximum flexibility of penalty calculations, 
fine-grained output seems to be required. On the other, 
the SLAM is not expected to duplicate the monitoring 
system functionality. An approach that was selected 
was to define an interface between SLAM and 
monitoring system(s) that would be used, if needed, 
to deliver the fine-grained data.  
 
4. SLA monitoring and management 
system requirements 
 

A key success factor for developing efficient SLAs 
is to ensure that focus is kept on translating business 
objectives to SLAs, where tangible service metrics can 
be measured, reported on, and validated. A key reason 
for failing to manage service levels is attributed to 
long, complex, and unrealistic agreements. As SLAs 
become more popular, the requirements for SLAs 
become more straightforward. The enterprise customer 
wants: 
• The ability to confirm that the SPs SLAs are 

being met for both connectivity and hosted 
applications, 

• The ability to demarcate for SLA problems with 
fine granularity, 

• The ability to impose financial penalties for 
violated SLAs, 

• Web-accessible business-level reports and 
detailed technical reports that can be enhanced 
and extended easily and incrementally, 

• Validation that key business objectives are being 
met when deploying new world technologies. 

SLA monitoring and management (SLAM) 
requirements were investigated in details basing on 
questionnaires and interviews with eight national and 
international telecommunication operators. This section 

summarizes this work and gives very fresh view of 
current, real technical and non technical requirement 
that must be meet by SLAM platform. 
 
4.1 Technical Requirements 

The challenges of providing end-to-end service-
level management can be daunting. In fact, no single 
vendor today offers a comprehensive end-to-end 
service-level management solution. This section 
defines SLA management activity and summarizes the 
obstacles that must be overcome to monitor and 
manage service levels effectively. 
 
Service-Level Agreement Management Defined 

Delivering on service-level agreements requires 
service-level agreement management (SLAM) where a 
given service has several service-components. While 
different vendors have different definitions and 
capabilities for managing service-levels, only one 
definition and capability is meaningful to customers: 
end-to-end management of all aspects that relate to the 
connectivity, performance, and availability of the 
service or application. 

Therefore, vendors focus has been on developing an 
end-to-end SLAM solution. The solution enables 
integration through open-standard interfaces and 
visibility of customers to all the various service-
components that make up a service. 
 
The Difficulties of Providing End-to-End SLAM 

Delivering end-to-end SLAM is extremely 
challenging. The solution must leverage component 
management products from multiple vendors; it must 
work with clients and equipment the customer does not 
own or have control of; it must adapt to new SLAM 
metrics as new technologies are deployed; it must scale 
by orders of magnitude; and it must collect the right 
network and application SLAM metrics at the right 
times – Fig.2. 

VPN

New SLA Metrics

 
 

Figure 2. Effective SLAM 

 
Collecting Data through the Stacks 

SLA metrics vary widely, and therefore the 
technologies for measuring those metrics vary as well. 



 

 

In managing service levels end to end, it is necessary to 
measure and collect data at every level of the network 
stack—from the Layer 5, 6, and 7 client-to-server layer 
to the Layer 3 and 4 network and network services 
layer to the Layer 1 and 2 WAN layers. The problem is 
that today, no product or technology does this. There 
are high-quality products from multiple vendors 
covering the client-server layers and the WAN layers, 
but there is little available in the Layer 3/Layer 4 space 
and virtually nothing that ties together the entire stack. 
 
Importance of Device Instrumentation 

Another complication of end-to-end SLAM is that 
client and application information must be acquired 
and related to the metrics acquired from the network 
infrastructure. The solution needs to minimize the 
increased complexity in the network infrastructure 
when acquiring the network SLAM metrics. This is 
best achieved when the network devices are 
instrumented appropriately. 
 
Need for "Drill-Down" Capabilities 

While it is important for an end-to-end SLAM 
solution to provide summary information to 
management, it is also critical that administrators be 
able to drill down and get details about specific 
problem areas. The ability to demarcate what is causing 
the SLA not to be met—whether it is a problem at the 
client end, at the server end, or in the network—is 
crucial. 
 
4.2 Functional Requirements 

Functional requirements for SLAM platform were 
worked out basing on ISPs questionnaires, literature 
study and analysis of actual competitive solutions, have 
a few dozen of pages. The most important ones are 
presented in this chapter. They are divided into two 
groups, SLA contract specification and platform 
functionality. 
 
SLA contract requirements 

From the business perspective SLA contract has to 
include not only technical but mainly organizational 
areas of service provisioning, all of them have to be 
mapped in SLA contract effectively deployed and 
managed by the platform. This area covers: 
• Definition of service provided, parties involved, 

and effective dates of agreement. 
• Specifications of hours and days that service will 

be offered, including testing, maintenance and 
upgrades. 

• Specification of the number and locations of users 
and/or hardware/software for which the service 
will be offered. 

• Explanation of problem-reporting procedures, 
including conditions of escalation to next higher 
level of support. 

• Explanation of procedure for both parties to 
request minor changes to the way the service is 
provided (e.g., software upgrade to a server), 
which may include expected times for completing 
routine change requests. 

• Specification of charges and billing and payment 
procedures associated with the service, which may 
be flat rate or tied to different levels of service. 

• Specification of target levels of service quality 
and how associated metrics are calculated and 
how frequently they are reported, to include 
availability and response time. 

• Description of procedures for resolving service-
related disagreements. 

• Process for amending SLAs to support expected 
growth, change, and demand for the service or 
system.  

• Specifications of how to address off-hours 
support, unscheduled outages, or emergency 
back- up systems, how emergencies will be 
handled and an outline of escalation process. 

 
Platform functionality requirements 

Form SLAM operator perspective, the platform 
should:  
• provide mechanisms to manage services in the 

following areas: SLA management, services 
quality monitoring, services repository, 

• support SLA development through the SLA 
templates management and SLA offers 
management, 

• provide inventory of services. Services in 
inventory are represented in hierarchical structure 
where one service may depend on other services.  

• provide a set of standard predefined QoS 
objectives for standard QoS parameters, 
including: Max Time To Restore Service and Min 
Availability, 

• support service independent types of SLA QoS 
parameters: Availability, Current Outage Time, 
Total Outage Time, Number of outages and 
Applied bonus(discount), 

• support SLA QoS statistical parameters: MTBF 
(Mean time between failure), MTTR (Mean time 
to repair) and MTBO (Mean time between 
outages), calculated at the end of contract date or 
period, 



 

 

• allow to monitor quality of managed services 
from the business perspective. The SLA 
calculates time left to restore failed service, 
current and future losses, 

• Support SLA alarms which contain information 
such as: SLA contract, affected customer, violated 
QoS parameters (current value and violated 
constraints), applied discount (loses), 

• allow to prioritize network and service faults 
according to possible financial loses, customer 
types, affected customers, 

• generate at the end of assessment period 
summaries which contains all SLA violation 
information. This summary may be exported to 
external BSS system for bonuses calculation. 
System provides additional SLA reports for 
customer. The reports are available through web 
interface. 

The above functional requirements could be 
changed and adapted depending on the stage of the 
solution development and the conclusions drawn in 
each stage the system deployment. 
 
5. SLA framework architecture                                               
 

Effective implementation of SLA management 
framework  requires specific infrastructure services to 
be accessible. This includes data sources together with 
specific adapters to collect and process the necessary 
data, graphical user interface, and the communication 
bus. The framework requires also to be deployed over 
real network architecture. This process needs access to 
specific inventory database to retrieve information 
about physical description, parameters and localization 
of each item (network device, interface, host) and how 
it is interconnected. 

Because the SLAM system has to process different 
types of information – the modular approach has been 
proposed as the most suitable for such implementation. 
Two types of information have been identified to be the 
most important. The first type it is the Fault 
Management information, either retrieved from existing 
Fault Management systems, or gathered directly from 
network elements. This information should be 
processed in the Service Monitoring module in the 
SLAM system. The second type of information it is 
performance related KPIs (key Performance 
Indicators), and heavily time dependant. This 
information should be processed by the Performance 
Management System in which the Performance 
Management engine is the most important. 

 

Object Repository

Network Inventory

Service Inventory PM Inventory (KPI def.)

SLA Inventory Alarm Repository

Inventory 
database

PM System

PMEngine

SQL System

Task 
Scheduler

KPI, counters

PM database
(KPI, counters storage)

Triggers
 processes

Data collections and 
calculations definitions

SLM System

SLA Monitoring 
Engine

Service 
Monitoring 

Engine

Reporting 
Engine SQL System

KPI 
(raw data)

SLM Data Storage (service state 
history, KPI, SLA parameters)

Services 
configuration

B
ill

in
g 

Sy
st

em
Tr

ou
bl

e 
Ti

ck
et

CDR 
(SLA violations)

State 
changes (API)

GUI (User console)

 
 

Figure 3. SLAM system architecture 
 
Figure 3 describes the overall architecture schema 

of the SLAM framework. Modular approach allows, by 
the use of mediation agents, to collect data from 
different data sources such as:  Trouble Ticketing 
system, Performance Management database or directly 
from the network elements. Such approach enables to 
use the SLAM framework, either as an umbrella system 
for other vendor specific, or client specific systems, or 
as a stand alone solution. The details of an example 
implementation will be provided later in this paper in 
the Case Study section.  

 

Service Access 
Point Template

Service 
Template

Product 

SLA Template

Service Access 
Point 

Service 

SLA 

Network 
Element

Customer 

SLM 

Inventory

 
Figure 4. Logical architecture of the SLAM 

framework 
 
The logical architecture of the system  presented in 

Fig.4 is composed of different levels containing: 
• Service Access Points  (SAP) – related to network 

elements (physical devices or components of 
these devices), 

• Services – composed of different service nodes 
or/and other services, 



 

 

• Products – understood as groups of services, 
• SLAs – linked directly to products. 

Each SAP, Service, SLA or Product is defined as a 
template object first and then instantiated  as a working 
instance (see Fig.5). SAP represents the relation 
between service and network infrastructure. SAP 
Template at the same time is a template object for SAP 
and in addition to it’s attributes, SAP Template object 
consists of set of rules for easy assigning appropriate 
Network Element objects to SAP objects related to a 
given SAP Template.  

Service Object is a single element of service-tree 
which is the representation of the real-life service 
structure and consists of the following attributes: 
• current state of the element, 
• event propagation formula for given element, 
• KPI propagation formula for given element. 

Each service object may have one of the two 
processing modes: Automatic - the state of the Service 
object is automatically calculated by the engine upon 
event propagation formula, Manual - the state of the 
Service is set by operator. Similarly to SAP Template - 
Service Template object is used to define service 
hierarchy and processing rules only. This object is not 
processed by SLAM Engine during Service and SLA 
monitoring process. 

Product object is used to group service tree-like 
structures. The template of the SLA contract can only 
be created in context of Product.  

Finally the SLA Object representing SLA contract 
consists of the set of common SLA parameters 
(Availability, Max Time to Restore, Time to Violate) 
and SLA KPIs, and it is instantiated according SLA 
Template. Only one Product Object can be attached to 
the SLA Template. 

 
 Service & SLA 

ITemplate

Instances

SLAs 

Services 

Products 
SLAs 

Services 

Customers

Network 
infrastructure

Available events Available KPIs 

Available network infrastructure types  
Figure 5. Instances and Templates in the 

SLAM framework 
 

The "near real time" computation approach has been 
identified as the most suitable for updating parameters 

of the SLA  objects. The required granularity of time is 
the parameter of the system. The performance issues 
and data delivery schedules determine the frequency of 
calculations of states for each of the objects. 

 SLAM 
Engine

„Near real-
time”  
Event 

processing 

„Near real-
time”  

KPI processing

„Long-term” 
KPI processing 

„Long-term” 
Event 

processing 

„Real-time” data „Delayed” data 

Approximate 
monitoring 

More precise 
monitoring results 

 
Figure 6. “Near real time” and “Long-term” 

information processing 
 

The proposed concept is presented in Fig.6. The 
“near real time” mode processes data incoming from 
the network infrastructure (events, KPIs) in almost 
real-time. All parameters of services and SLAs are 
calculated continuously with configurable time period 
(depending on number of monitored services and SLAs 
and hardware specification the „real time” calculation 
period can vary between 1 minute to 60 minutes). 
Because not all network devices provide required data 
in short periods of time, it is possible that results of 
„real time” processing can be inaccurate (for example 
KPIs can be retrieved form some devices once an hour 
or even rarely). 

In order to process historical or outdated data 
coming from network infrastructure (events, KPIs) the 
„Long-term” processing mode has been implemented. 
It recalculates all parameters of services and SLAs 
taking care that all the information which was not 
available during „near real time” processing will be 
processed tin the “long-term” cycle. 

„Long-term” processing helps to improve the results 
of evaluation of parameters of services and SLAs. It is 
possible to define more than one „long-term” processes 
running with different delays and in different 
schedules, but at least one „long-term” processing must 
be running to generate reliable data for SLAs after 
accounting period. 
 



 

 

SAP objects 

Service objects 

SLA objects 

Events from the 
network 

Values of 
SLA 
parameters 

SLA 
violation 
alarms 

KPIs from the 
network 

 
 

Figure 7. Events and KPIs processing 
 

Events from the  (see Fig.7) network are collected 
by the Fault Management system and processed 
through filters classifying them into three categories 
(CRITICAL, WARNING, CLEAR). They are used to 
define the state of the SAP which is then propagated 
upwards the service tree structure. For each service 
object the service propagation rules decide which 
events should be considered to put the service in a 
specific state. For SLA object the parameters are 
calculated and after checking for thresholds the values 
of SLA KPIs, SLA violation alarms are generated if 
necessary. The SLA KPIs are specific for SLA and are 
somewhat different form the performance indicators for 
services and SAPs.  

The KPIs for Service Access Points are aggregated 
on each level of the structure. It is possible to define 
separate aggregation formulas for each type of SAP or 
Service. After aggregation the KPIs are used to define 
the state of the Service and then propagated upwards to 
define the state of the SLA. 

Three main modes have been implemented to 
manage the SLA contracts: 
• „Real time” reporting with Alarm List, 
• „On demand” reporting with Reporting Module, 
• Automatic, scheduled reporting with separate 

Reporting Module. 
The Alarm List, shown in Fig.8 enables (with use of 

specific filters) to show only this information which is 
at the moment the most relevant and important for the 
operator. The operator can monitor the states and KPIs 
of the SLAs, and in case of an emergency can “drill-
down” through the whole tree like structure of the 
services and SAPs exactly to the network element 
which causes problems. This speeds up the reaction 
times, and helps to cut down on penalty costs resulting 
from SLA violations. 

 

 
 

Figure 8. Alarm list service monitoring 
 

The “on demand” reporting helps the operator to see 
all the aggregated KPIs of the selected service and 
SLA. It might also be useful before actually signing 
and implementing the SLA, in order to prepare 
feasibility study if the expected parameters can 
possibly be met. 

Automatic reporting can be scheduled after the SLA 
has been signed in order to prepare detailed billing 
information and SLA report for the customer. Specific 
rules can be defined in order to calculate the penalties 
resulting from SLA violations. 

SLA management framework can also be integrated 
with CRM system, and certain access rights to some 
information can be given to sales agents or account 
managers to help them manage specific SLAs of their 
clients retrieve information about their states. 
 
6. SLA application case study                                                
 

The prototype of SLAM framework system has been 
installed as a pilot implementation for a large national 
fixed telephony and internet service provider. The 
solution is now used to monitor state of the 4 VPN(s) 
(Virtual Private Networks) and to calculate the SLA 
parameters of the SLA contracts. Each node of the 
particular VPN is connected to the different interface 
of the core network routers and is monitored 
independently. The monitoring of the VPN node is 
performed by Service Assurance Agent which is 
embedded part of the OS of the Cisco routers. The 
agent periodically sends the configured amount of data 
packets to the Customer Premises Equipment (CPE) 
where Agent Responder is installed. Therefore  the 
agents provide following metrics of the link: 
• Availability (0 – link is available, 1 – link 

unavailable), 
• Average Round Trip Time [ms], 
• Round Trip Time Jitter [ms], 



 

 

• Packet Loss [%], 
• Incoming traffic (kb/s), 
• Outgoing traffic (kb/s). 

The measured values are accessible by means of 
SNMP protocol and gathered from the routers every 
five minutes and stored in flat files by an external 
application. Periodically (every hour) the files with 
performance data are uploaded into two databases: 
production one and developer one. 

The requirements were defined such, that only the 
performance indicators were monitored, and no fault 
management data were taken into consideration. The 
performance data are stored every hour into dedicated 
database (Sybase ASE-15). Several thresholds for 
availability and performance parameters have been 
defined and penalty calculation formulas have been 
implemented according to the requirements of the ISP. 

The mediation used to fetch the data from the 
dedicated mediation database running Sybase is 
composed of the two server processes: 
• process querying the relational database, 
• “adapter” which is a translator between standard 

SLAM system data request API calls to the 
process which queries the SQL database. 

Once data are fetched the process creates the 
Performance Management (PM) Module data response 
and sends it back to the PM Module where the data is 
processed (KPI are calculated and stored into internal 
database and could be utilized by SLAM module). 

The inventory data model has been configured in 
order to store specific objects  required to create 
performance data collection processes, two new classes 
have been created in order to map the inventory model 
on it’s representation in the Mediation Database. The 
first class (SAACollector) represents the connection 
between the interface on the ISP router and the 
customer site. For each VPN node one instance of this 
object has been created. The second class (VPNSite) 
represents a customer site as a part as the particular 
VPN. 

Because the SLAM framework philosophy requires 
first to create templates and then instantiate them - six  
templates have been defined: one SAP template 
(defines template for the VPN node link and specifies 
which KPIs are propagated to the service level), one 
service template (using the previously defined SAP 
template with the specification which KPIs are 
available at the SLA level), and one product  template 
(containing the previously defined service template) 
and three SLA templates. 

Then the specific instances of the objects and SLA 
contracts have been created out of the previously 
defined templates. The correlation system has been 

used in this implementation to perform custom action 
when the PM Threshold alarms are generated. This 
kind of alarms notifies the user that bandwidth usage is 
above given threshold and the penalties should not be 
calculated for the KPI(s). 

The reporting functionality allows the users to: 
• display the current KPI values in the graphical 

way (chart), 
• monitor the status of the services and SLA 

contract in so called “near real-time” by means of 
the Alarm list and dedicated views available in 
SLAM module, 

• calculate the penalties for the SLA violations by 
means of predefined report templates. 

Therefore the SLAM system has been implemented 
successfully in a real environment. All the predefined 
requirements of the client have been met, and presently 
the system is being evaluated from business 
perspective. 
 
7. Conclusions 
 
The proposed framework for SLA monitoring and 
management represents rather general solution that may 
be customized according the offered services 
provisioning, SLA definition requirements and 
underlying monitoring system infrastructure.  
    The constructed mechanisms of data flow and 
transformation between the monitoring layer and the 
SLA layer are rather general.  They benefit from clear 
object oriented approach and representation of the 
services as a tree structure. 
    A very sensitive point of the proposed solution is the 
SLA evaluation procedure. Splitting this procedure into 
“near real time” and “long-term” phases seems to be 
the only solution which could satisfy rather general 
needs. 
    The proposed SLAM system follows an open loop 
control model without feedback between observed SLA 
values and activities that should be taken on network 
infrastructure layer to achieve SLA objectives. Closing 
this loop it another challenging task should be resolved.    
 
Acknowledgement 
 

This research was partially supported by Polish 
Ministry of Education and Science; grant no. E! 3152 
SLAM. 
 
8. References 
 
[1] Carr Jim, Service Level Agreements, CMP, Inc., 2001.  
 



 

 

[2] Service-Level Management: Defining and Monitoring 
Service Levels in the Enterprise, White Paper, Cisco 
Systems, Inc., 2001. 
 
[3] John Lee, Ron Ben-Natan, Integrating Service Level 
Agreements: Optimizing Your OSS for SLA Delivery, Wiley, 
2002. 
 
[4] Rick Sturm, Wayne Morris, Foundations of Service Level 
Management, Sams, 2000. 
 
[5] Viewgate's Advisor Product Enables Service Providers to 
Deliver on VPN SLAs and Build Customer Loyalty , 
Viewgate Networks, ISP Business, July 2001. 
 
[6] Aglient, Agilent's QoS Manager – Firehunter, 
www.agilent.com.  
 
[7] Oblicore, Oblicore Guarantee, www.oblicore.com. 
 
[8] IBM, WebService Level Agreements – WSLA, 
www.research.ibm.com/wsla 
 
[9] Comarch S.A,  InsightNet, www.comarch.com. 


