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Abstract 
 

Spatial distribution of individuals and the way they interact with their neighbors and environment are 
important factors, which are neglected in simplistic ecological models. Therefore, the logistic equation (LE) 
fails in describing evolution of majority of real populations. More intriguing is the inverse problem. What 
conditions must spatially extended systems (SES) satisfy to reproduce the logistic map? To address this 
dilemma we define 2-D coupled map lattice with local rule mimicking the logistic formula. We show that 
for growth rates k≤k∞ (k∞ is the accumulation point) the global evolution of the system reproduces exactly 
the cascade of period doubling bifurcations. However, for k>k∞, instead of chaotic modes, the cascade of 
period halving bifurcations are observed. Consequently, the microscopic states at the lattice nodes 
resynchronize producing dynamically changing spatial patterns. By downscaling of the system and 
assuming intense mobility of individuals over the lattice, the correlations can be destroyed and the local 
rule remains the only factor deciding about the evolution of the whole colony. We found the class of 
“atomistic” rules for which uncorrelated spatially extended population matches the logistic map both for 
pre-chaotic and chaotic modes. We concluded that the global logistic behavior can be expected for a colony 
with high mobility of individuals whose local behavior is governed by semi-logistic rule with long dispersal 
and competition radiuses. The populations forming dynamically changing spatial clusters and stable 
patterns behave in a different way than the logistic model and reproduce at least steady-state fragment of 
the logistic map. 
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1  Introduction 
 
Most of fundamental ecological factors, such as individual behavior, population diversity, species 
abundance, and population dynamics, exhibit spatial variation. This trivial property has many 
important consequences on the evolution of organisms and populations. On the one hand, the 
evolution can produce spatially stable colonies of individuals enabling the optimal use of the 
environmental resources. On the other, spatial dynamics of individuals allows for better exchange 
of genetic material thus increases the fitness factor of the entire colony.  To understand the role of 
spatial variations in evolution, many ecological models were studied.  

The simplest are the coupled logistic maps (CLM) which do not include space in an 
explicit way. The CLM model consists of only two patches coupled by dispersal, with dynamics 
in each patch governed by the logistic map. As shown in [1,2,3] the coupling can stabilize 
individually chaotic populations or make a periodic population more chaotic. However, CLM 
have serious limitations. The maps can be used for studying subdivided distant populations. 
Meanwhile, to investigate the tightly coupled colonies involving the interactions over the entire 
living area, explicit space is required [4], as it is, e.g., in the reaction-diffusion approaches [5-9]. 
In these continuous models the dynamics of population density is dictated by partial differential 
equations (PDE). As show in [9], the motion of simple organisms can produce stable and regular 
strips and checkerboard like patterns that can be formed by diffusion driven instabilities. 
Moreover, the movement of multiple species can change the outcome of competition and 
predation in the predator-pray problem [9].  

For simulating the evolution of discrete entities, over discrete or continuous time and 
space, many epidemic models employ simple rules instead of PDEs. For example, in the cellular 
automata (CA) models the individuals are located in the nodes of 2-D (or 1-D) lattice and evolve 
in discrete time [8, 10-14]. According to microscopic CA rule, the offspring are dispersed across 
a dispersal neighborhood and individuals have a death rate depending on the population density 
in a competition neighborhood. The results obtained from CA approaches can be refined by using 
continuous individual-based model (IBM) [15] in which discrete objects evolve in continuous 
time and space, and moment closure models involving mean-field approximations [16,17]. The 
clustering of individuals and influence of the dispersal and competition on global dynamics of the 
whole population is scrutinized by using, so called, spatial logistic equation (SLE) [4]. SLE 
differs from the logistic equation only in that the term x2 (x is a population density and x∈[0,1]) of 
the logistic equation is replaced with an integral expression. In [4] the authors concluded that the 
populations can grow much slower or much faster than would be expected from the non-spatial 
logistic model. Eventually, different steady-states are gained. Moreover, they can reached their 
maximum growth rate at densities x≠1/2, i.e., unlike it comes out from the logistic formula. These 
types of behavior can be controlled both by values of dispersal/competition radiuses and their 
ratio.  

This SLE approach focuses only on the steady-state dynamics and its analytical 
approximations. The conditions of convergence of the known spatially extended models to the 0-
D logistic-model for the full span of dynamic modes, including bifurcation cascades and chaotic 
modes were not addressed yet. Therefore, the important questions arise. Do the spatially extended 
populations, which reproduce the full evolution scenario from the logistic map, exist? If they do, 
what conditions must be satisfied? The positive answer on the first question is of a fundamental 
importance. Otherwise, the logistic law could not be treated as “the law” anymore, because every 
population is attributed by the space it occupies. 

To answer this problem we use the cellular automata (CA) model. Cellular Automata 
paradigm allows for modeling of relatively large, spatially extended systems (SES), and is general 
enough to represent variety of types of systems and evolution scenarios.  In the first section we 
define the continuum 2-D coupled map lattice and we show that logistic equation is not a scale-
free model for SES. We downscale continuum CA system by consecutive discretization of the 
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states of automata up to binary representation. Consequently, we refine this binary model to 
simulate the population of individuals evolving on the CA lattice. Then we derive the microscopic 
CA rules, which allow the entire population for reproducing the dynamics of the logistic model. 
We explore the properties of this system by studying various factors which control dynamics of 
the entire population such as: the mobility of individuals, number of neighbors, dispersal and 
competition radiuses. We discuss the role of emerging patterns in control of population dynamics. 
Finally, we summarize the conclusions. 
 
 
2   Coupled map lattice  

 
We consider a spatial single-specie logistic model, which dynamics is governed by the logistic 
map:  

( )nnn xxkx −⋅→+ 11                                                             (1) 
 
where x∈[0,1] represents the current population density while n is the generation number and k is 
the growth rate. The time evolution of this map is well understood (e.g. [23]). If the value of k is 

between 0 and 1, the equilibrium at x=0 is stable. If 1<k<3, x= ( ) 





 −=

k
kf 11  is the fixed point 

of iteration. At k=3 there is a period-doubling bifurcation, starting a period-doubling cascade that 
leads to the onset of chaos at k>k∞=3.569945672…, where k∞ is the accumulation point [18]. For 
k>4 the map generates negative numbers.  

As shown in [2,4] the logistic equation often fails to describe the evolution of realistic 
populations. The reasons are manifold, e.g.: 

 
1. heterogeneity of the environment, 
2. dispersal may not increase linearly with density or there may be a time delay in the 

operation of dispersal and/or competition,  
3. time delays can occur in structured populations when density affects vital power at 

particular sizes or ages, 
4. the random collision of individuals assumed in the logistic equation, often referred to as 

the “mean-field” assumption, may not represent interactions among organisms well. 
 
As shown, e.g., in [2,5-7,14,19-21], deviations from logistic behavior for spatially extended 
systems (SES) are often manifested by production of patterns. These spatial patterns can be 
treated not only as a pure consequence of population dynamics, i.e., the effect of energy 
minimization in dissipative open system, but as a built-in self-control mechanism for stable 
evolution.  

To understand better the factors making the simple logistic model different from realistic 
evolution of populations, we try to find spatially extended systems which global behavior follows 
exactly the logistic law. Particularly, they should produce the same path-to-chaos scenario. Then 
we could specify the conditions of such the systems existence. Cellular automata (CA) paradigm 
is a very efficient and flexible model of SES [10,12]. It represents a synthetic model of universe 
in which physical laws are expressed in terms of local rules R. As shown schematically in Fig.1, 
our problem reduces then to derive such the CA microscopic rules R for which the entire system 
mimics the logistic model. Finding such the rules in mathematically rigorous way is a very hard 
inverse problem, so we try to guess the solution basing on some hypotheses and observations. 

At first, we check if the logistic model is scale-free, i.e., if it can be used as the local rule over 
various spatial (and spatio-temporal) resolutions. If it does, we will have the first solution 
instantly. If not, we can try to construct a better rule on the basis of this first approximation.  
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Fig.1 We are looking for a CA microscopic rule, which produces global logistic map. 
 
Let us consider continuous state cellular automata. We define a two-dimensional squared lattice 
of nodes ℑ(l,m)=[{l,m}, l=1,...,M; m=1,...,M]. One-dimensional CA does not simplify the 
problem too much and it imposes additional unrealistic constrains on population evolution. The 
lattice is periodic, homogeneous and bounded but large enough the edge effects to be neglected. 
We assume that M=100-300 because, as we observe, for the most of simulations the structures 
with correlation lengths < 100 produce adequate statistics. The values Xkl in the nodes 
representing their states are the real numbers from [0,1] interval. Every {l,m} node interacts only 
within its closest neighborhood Ω(l,m). The neighborhood of {l,m} node is the sum of dispersal D 
and competition C neighborhoods Ω(l,m)=ΩD(l,m,R)∪ΩC(l,m,r). We assume for generality that 
ΩD(l,m,R) and ΩC(l,m,r) can be different, where R and r are dispersal and competition radiuses, 
respectively. For example, the Moore neighborhood has only N=8 adjacent nodes and r=R=1. 
The dispersal reflects “biological power” of the population, which is proportional to the 
population size, i.e., ΩD(l,m,R)→kYD, while the competition is the selection pressure caused by 
the shrinking resources (space) due to population growth, i.e., ΩC(l,m,r)→(1-YC), where YD and 
YC are the local population densities in R and r radiuses, respectively. 

Initially, the X0
lm values are generated by random number generator rndlm∈[0,1]. The 

population evolves in space and time. The CA system is updated synchronously according to the 
set of rules R:  
 

                                 ( ) ( )[ ]rmlRmlXX CD
n
lm

n
lm ,,,,,,1 ΩΩ→+ R ,                                          (2)                            

 
where n

lmX   denotes the state of {l,m} node in nth generation (time). Because R and r can be 
different and n

lmX  ∈[0,1], we assume that if 1+n
lmX >1 in Eq.2 then 1+n

lmX  is rounded to 1. 
Let us assume, that the automata in the system are independent, i.e., r=R=0 and the rule R is 
defined as follows: 
 

( )n
lm

n
lm

n
lm XXkX −⋅⋅=+ 1: 1R .                                                   (3) 

 
Such the system is locally logistic in every node of CA lattice. As shown in [22], for k=4 the 
subsequent Xlm values in each node match well the following statistical distribution: 
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( )( )lmlm rndX ⋅−⋅= πcos1
2
1 ,                                              (4) 

where rndkl∈(0,1) are random numbers generated by a uniform random number generator.  The 
expectation value over the entire lattice x=E(X)=1/2 and the variance σ2=1/8. The system is 
globally stable and asymptotic for 1<k<4 and *lim xxn

n
→

∞→
. However, if we start all the automata 

from exactly the same initial value, we obtain the logistic map shown in Figs.2:a1,a2. 
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Fig.2 Figure (a1) and its zoomed part (a2) show the classical logistic map. The maps from figures (b1) and 
(b2) were obtained for 2-D coupled map lattice defined by Eq.5. Figures (c) and (d) shows the snapshots 
(n=2500) of the surfaces representing CA states on the 100x100 lattice close to the accumulation point k∞. 
Some imperfections in logistic maps (e.g., the lack of initial phase of bifurcations) are caused by 
approximations used during their generation. 
 
Let us define the lattice of CA coupled by the logistic local rule R which involves interactions 
between neighboring cells: 
 

( ) ( ) { }
,

1
1  ,1:

,),(

1 ∑
∪Ω∈

+

+
=−⋅⋅=

mlmli
ilm

n
lm

n
lm

n
lm X

N
YYYkXR                               (5) 
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where r=R, ( ) 112 2 −+= rN  is the number of neighboring nodes, Ykl is the local average of CA 
states over Ω(l,m). By averaging Eq.(5) over entire lattice we obtain that: 

( ) 21  1 n
nnn kxxkx σ⋅−−⋅⋅=+                                                        (6) 

where:                             ( )[ ] ( ) 2222 /     ,  MXxYEYE
lm

n
lm

nn
lm

n
lmn ∑=−=σ                                                  

The first part of Eq.6 is responsible for global dynamics of the whole system while the second 
one represents spatial, local modes. As follows from Eq.6, the coupled CA system can mimic 
exactly the logistic model provided that no spatial patterns are created during the system 
dynamics (i.e., σn

2=0). Because 0<xn<1, the interval of possible xn values becomes narrower with 
increasing variance. 

The results from simulation displayed in Figs.2:b1,b2 show that for k<k∞ the entire 
system reproduces exactly the logistic path-to-chaos scenario represented by the cascade of 
period doubling bifurcations. For k<k∞,, the CA system converges fast to uniform and 
synchronized lattice of automata (see Fig.2c) with zero variance (σn

2=0, in Eq.6). As shown in 
[23], for a class of coupled logistic lattices the temporal and spatial periods of the observed 
patterns undergo successive period doubling bifurcations with decreasing coupling strength. 
Eventually, for k>k∞ the value of Lyapunov exponent becomes greater than 0, and propagating 
round off error destroys the coupling. Then, instead of chaotic modes observed in Figs.2:a1,a2, 
the entire system produces the cascade of period halving bifurcations (compare Figs.2 a1,a2 to 
b1,b2). Finally, for k>3.9, the value of x stabilizes and fluctuates around the fixed point (x*≈2/3). 
As shown in Fig.3a, the variance σn

2 increases with k for k>k∞. The non-zero variance signals the 
appearance of spatial patterns (see Fig.2d). Simultaneously - similarly to the CA nodes in 
decoupled lattice of automata defined by Eq.3 - individual CA lattice nodes become chaotic (see 
Fig.3b). This way, the fully synchronized and globally periodic system undergo resynchronization 
in k=k∞  and eventually - for larger k - becomes globally static (fluctuating) and locally chaotic. 
 

k

σσσσ2 

0.04 

0.02 

3.55 3.65 3.75 3.85 

0.03 

0.01 

3.95 

0.05 
a 

   
k

X*
10,10 

1 

0.5 

3.55 3.6 3.65 3.70 

0.7 

0.3 

b 

  
 

Fig.3 a) The variance σ2 and (b) the map of the values of  nX 10,10   (see Eq.5) in {10,10} node from Eq.6 
with increasing k. 

 
The lattice of continuum state CA can be treated as a system of interacting environments (CA 
nodes) with identical population capacities and infinite number of states s. The value of Xlm 
represents then the population density in the {l,m} environment (CA node) while the value of s 
defines the maximum number of individuals which can populate a single CA node (environment). 
Discretization and consequent decreasing the number of states can be interpreted as downscaling 
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of the system. The neighborhood Ω(l,m) is shrinking simultaneously with decreasing population 
capacity of the environments.  
 

 
Fig.4 The maps for CA lattices with increasing discretization of CA states. The value of s stands for the 
number of possible CA states. 
 
As shown in Fig.4, the number of bifurcations decreases due to discretization of the CA states. 
Eventually, for s=2 we obtain binary CA with discretized logistic rule R (Eq.5): 

( )
{ }

{ }.1,0    ,
9
1     ,

2
1  if   0

 2
1  if   1

  ,1:
,),(

1 ∈=






<

>
=−⋅⋅= ∑

∪Ω∈

+ XXY
a

a
XYYka

mlmli
ilm

n
lm

n
lm

n
lmR           (7)                

As displayed in Fig.4 (s=2), the global dynamics of this system is very different from the logistic 
map. For k<2.3 the average population density x=0 while for k>2.3 it fluctuates chaotically 
around some stable attractors.  

Summarizing, we have demonstrated that the logistic equation is not a truly scale free 
model when applied for the lattice of continuum state cellular automata. We have showed that 
only for k<k∞, the CA system exactly reproduces the cascade of period doubling bifurcations. The 
appearance of chaotic modes for k>k∞, destroys synchronization and tamed global chaotic 
behavior. Instead of global chaos, the spatial patterns emerge. Downscaling (discretization) of the 
CA system destroys also the pre-chaotic cascade of period doubling bifurcation. However, in 
contrast to multiple-state CA, the binary cellular automata system manifests clear chaotic 
behavior displayed in Fig.4 (s=2). 

On the basis of these hints, we can expect that the candidate of SES, which can reproduce 
the logistic map, should be searched among binary CA systems with local rules enabling to 
eliminate correlations responsible for creation of spatial patterns.  
 
 
3 Binary Cellular Automata 
 
The binary CA periodic lattice can be interpreted as the living space for individuals. When an 
individual occupy the node {l,m} then Xlm=1, otherwise Xlm=0. For the Moore neighborhood 



 8

(r=R=1) every {l,m} node “sees” only its NN=8 adjacent nodes. Initially, the lattice is populated 
randomly and the average population density x=x0. The population evolves in space and time. 

Unlike in the previous section, we consider now a binary CA system, which dynamics is 
governed by two repetitive rules: 
• R1:  random walk within a given time period ∆T, realized using lattice gas automata (e.g. [6]) 
• R2: evaluation round:  
 

( ) ( )[ ]





>
<

=

ΩΩ→

+

+
+∆

+∆

1

1
1

1

  if 0
  if  1

,,,,,,

n
lm

n
lmTn

lm

CD
nT
lm

Tn
lm

rnd
rnd

X

rmlRmlX

ε
ε

ε R2
                                           [8] 

where: Xlm – the binary CA states, ΩD and ΩC - the dispersal and competition neighborhood, 
respectively, εlm – the probability that Xlm=1 in the following generation, rnd – random number, 
rnd∈(0,1). 

The random walk represents the randomization factor which breaks local correlations. The 
value of ∆T is equal to the number of walking steps and defines the extent of randomization. We 
can assume that for adequately large value of ∆T=∆TMAX the CA population becomes fully 
uncorrelated. Such the “uncorrelated” system can be simulated by using much simpler model than 
random walk. The random collisions and motion of individuals during ∆TMAX can be mimicked by 
their random scatter of over the CA lattice after each evaluation round R2. It means that the time-
step between subsequent R2 rounds is equal to ∆TMAX.  

We define the stochastic rule R2 as a set of probabilities a1/0 i: 
 

{ }1;10102 1
,0,1 =≤≤∧≤≤= +n

lmii XaaR                                          (9) 
 
that in n+1 timestep, Xlm with i nonzero neighbors in Ω(l,m) remains/becomes populated. 

This type of rule represents a broad class of 2-D cellular automata, including totalistic CAs, as 
well as, many well known specific automata [10] such as the “game of life”, parity rule automata, 
Vichniac annealing rule, spin glasses, and many others. As shown in Fig.1, we are looking for a 
local rule R2, for which the 2-D CA system will mimic, as a whole, the logistic formula from 
Eq.(1).  

To find proper R2 rules, we assume that before employing the rule R2 synchronously in all 
lattice nodes the distribution of individuals is random. This is due to application of R1 rule for 
∆T=∆TMAX according to the current population density xn. As shown in [24], for randomly 
scattered points on the plane, the number of individuals in a circle of radius r will follow a 
Poisson distribution. Therefore, it is justified that the statistical distribution of the number of 
populated CA nodes in the neighborhood Ω(l,m) for each {l,m} node can be approximated by 
binomial distribution. Then the population density x evolves in time according to the following 
formula: 
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and 0<p<1 and 0<q<1 are “environmental” probabilities of survival of existing individuals and 
newborns, respectively. We are looking for such the rules R2 which reduce the Eq.10 to Eq.1. 
Comparing Eq.1 with Eq.10, after some algebra we obtain finally that: 
 

1),max(,...,1for      

0  ;
1 001

101

−=

===






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⋅
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




−
⋅

⋅ +

DC

N
iD

C

iC

NNi

aak
i

aNq
iN

aNp
C                                   (11) 

 
where k is the biotic potential from Eq.1. The maximum value of k, kmax, for which Eq.10 can be 
reduced to Eq.1, is computed from (11) assuming that NC=ND=NN, a0i=a1i=1 and i=NN/2. We 
obtain that: 
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                        (12) 

As it comes out from Eqs.12, the “uncorrelated” population can reproduce the whole logistic map 
in macro-scale for certain microscopic rules R deduced from Eq.11 in case of infinite 
neighborhood NN→∞. For the Moore neighborhood (NN=8), the system reproduces only the part 
of it, i.e., the fragment for k≤kmax=3.6. The number of rules satisfying Eq.11 is infinite. A few 
exemplar rules are collected in Table.1. Except of the set 3 in Table 1, the remaining sets mimic 
approximately dispersal and competition rules from the logistic equation. Despite that these 
microscopic rules are not perfect copies of the resulting macroscopic behavior they are of a very 
similar nature. 
Table 1. A few examples of CA microscopic stochastic rules computed from Eq.11 and producing chaotic behavior for 
“uncorrelated” CA populations (NN=8, p=q=1). The CA systems governed by these rules replicate the logistic equation 
with k<=kmax=3.6. 

                            
 

Let us reduce the number of possible solutions of Eq.11 focusing on the totalistic cellular 
automata. Then the subsequent state of each {l,m} node depends on the probability ai∈(0,1) 
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computed for all individuals in Ω(l,m) neighborhood including the i={l,m} node. By substituting 
ai=a1i=a0i+1 (a-1= a00=1) and for p=q=1 the Eq.11 reduces to a unique solution: 
 

( )
( ) ( ) ],0(~1 1

1
1

maxkkYYk
N
i

N
ika ii

NN
i ∈∧−⋅=








−⋅

+
+

⋅=                          (13) 

where 1<k≤kmax. The values of Y and iY~  are the maximum local population density and the 
population density in the closest neighborhood of {l,m} node, respectively. The values of resulting 
probabilities are shown in Table 1 as the second set (2) of exemplar rules. It is worth to mention 
that the Eq.13 is very similar - but not identical - to microscopic logistic equation defined by 
Eq.7.  

a1 b1 

a2 b2 

a3 b3 x* 

kmaxkmax

x* 

4 

3 

2
1

Uncorrelated CA Correlated CA 

         
 

2 3.6 
k 

y x* 

 
Fig.5 Selected results from two classes of discrete cellular automata systems representing “uncorrelated”  - 
the left panel - and “correlated” – the right one - populations. The histograms (a1,b1) represent the 
probability of finding from 0 to 9 populated nodes in the Moore neighborhood. The snapshots of contours 
(a2,b2) on the CA lattice shows the location of populated and unpopulated CA nodes. The white spots mark 
populated nodes. The average population densities (a3,b3) as the function of k (1,3) are confronted with the 
function  f(k)=1-1/k. 
 
In the left panel of Fig.5 we display: 
 

1. the histogram of the number of populated nodes in Ω(l,m)∪{l,m}(a1),  
2. contour map (a2) of the CA lattice before random scatter procedure; the white spots stand 

for populated area (M=100), 
3. the total population density x as a function of k (a3), 

 
obtained for the “uncorrelated” CA system with totalistic rule R2 defined by Eg.13. The 
histogram from Fig.5a1 reproduces well the binomial distribution of neighbors. As shown in 
Fig.5a2, the CA lattice is populated in a very chaotic way. The logistic map is confronted with the 
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function ( ) 





 −=

k
kf 11 . As shown in Fig.5a3, the CA system with microscopic rule R2 

reconstructs well the part of the logistic map for k≤3.6 in the macro-scale. The imperfections and 
noise seen in Fig.5 are the result of the limited accuracy dictated by the size of CA lattice (to 
obtain Fig.5a3 we used 500x500 lattice) and approximate procedure used for reconstruction of the 
logistic map.  

As shown in the right panel of Fig.5, by disabling the procedure of random scatter 
(random walk with ∆T=∆TMAX), the rule R2 alone produces global dynamics of CA system which 
differs substantially from that predicted by the logistic law. The histogram of nearest neighbors 
(b1) is different than the binomial distribution (a1), larger spatial structures emerge on the lattice 
(b2) and the population is stable for all values of k (b3). We can conclude that the spatial 
structures produced by correlated populations can restrain organisms to encounter each other 
proportionally to their average density. This way, the spatial patterns can postpone or inhibit 
completely the chaotic changes in average population density.  

To show the influence of population motility on the global system dynamics we enable 
the random walk rule R1 with growing ∆T. The value of ∆T is equal to the number of random 
walk steps allowed before the R2 evaluation rule. The random walk is realized employing HPP 
lattice gas described in Chopard and Droz book [10]. This model is discrete equivalent of the 
classic diffusion-reaction model of ecological import, which represents logistic population 
evolution with Brownian random dispersal [9]. As shown in Fig.6, for ∆T=10000, the fluctuations 
of population density are very similar to that observed for the “uncorrelated” model. Due to the 
fast diffusion, the discrete systems can develop chaos. This effect can be strengthen additionally 
by combining diffusion with greater neighborhood Ω(l,m), i.e., by increasing dispersal and 
competition radiuses. Then, according to Eq.12, the value of maximum biotic potential kmax also 
increases. As shown in Fig.7b, for r=R=30, the parabolic phase diagram is reproduced much 
better than in Fig.7a (r=R=1). It means that due to greater neighborhood, the entire CA system 
can reconstruct better chaotic modes of the logistic map. We showed that the population becomes 
“logistic” in the limit of infinite motility (∆T) and the size of neighborhood (NN). Do we get the 
same effect by increasing only the local neighborhood Ω(l,m)?  
 
 
 

    
∆∆∆∆T=1 ∆∆∆∆T=2 ∆∆∆∆T=5 ∆∆∆∆T=10 ∆∆∆∆T=200 ∆∆∆∆T=10000 Random scatter 

Generation (time n) 

Population density (xn) 

Fig6. The fragments of time series xn  for various population motilities.  
 
As shown in Fig.8, by assuming greater neighborhood for “correlated” CA system we obtain self-
similar patterns, which zoom in with increasing r=R. These patterns are very unstable due to 
strong selection pressure caused by competition. The competition destroys dense clusters of the 
radius equal or greater than r=R allowing for creation of thin “borders” between less populated 
areas. Because the “borders” vanish very fast due to the strong competition, and compact clusters 
emerge where the local population density x≈1/2, the spatial dynamics become oscillating and 
unpredictable. Despite this intricate dynamics even for relatively large r=R only feeble time 
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fluctuations of the average population density can be observed. As shown in Fig.9, the signs of 
chaos can be recorded for the neighborhood diameters r=R comparable to M - the size of the CA 
lattice. Only then the fast oscillations of large spatial patterns cannot be compensated by reverse 
oscillation elsewhere on the lattice.  
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k max =  3.9958 
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Fig.7 The phase diagrams for the “uncorrelated” CA system for different dispersal and competition 
radiuses. a) For the Moore neighborhood (R=r=1), the system just started to be chaotic. b) The chaos 
develops for increasing number of neighbors (see Eqs.12).  
 

      
 

      

a b

c d

 
 

Fig.8 The self-similar patterns produced on the CA 300x300 lattice for the “correlated” population model 
assuming r=R= a) 3 b) 10 c) 20 d) 50. The black dots stand for populated nodes. 
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Generation (time n)
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Fig.9 The fragments of plots showing the changes of population density x in time for the motionless 
“correlated” CA system for various aspect ratios λ=(2⋅R+1)/M.  
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Let us wonder now what will happen when radiuses of dispersal R and competition r are different. 
As shown in [4,9], such the break in symmetry between dispersal and competition is very 
common in realistic populations.  Different r and R radiuses may cause the values of a (see 
Eq.13) be greater than one. To eliminate this effect we modified Eq.13 assuming that a, is a sort 
of fitness factor of individual. The probability that a certain node will be populated in the 
following round (n+1) is equal to: 

( ) (14)                                                              
1      1
1      





≥
<

=
a
aa

af  

 
By increasing r/R>>1 ratio, i.e., the competition (r) is greater then dispersal (R), the stabilizing 
influence of competition allows for existence of stable clusters with radius less than r and greater 
than R. It is easy to deduce that the optimal forms of clusters are strips and clumps. As shown in 
Fig.10, the simulation results confirm this conjecture.  

The similar patterns were observed in [4] for PDE predator-prey model with explicit 
diffusion term. They are generated purely by the dynamics of the interactions between the 
predators and pray assuming that diffusion rate of predator is sufficiently greater than the 
diffusion of the pray. Then the stabilizing influence of the predator may be dissipated by 
diffusion, yielding regular peaks and streaks of prey and predator densities. The reasons of 
creation of the same patterns by our model are similar. This time, however, instead of diffusion 
the large competition radius decreases the competition pressure allowing for increase of the local 
density of population. Unlike the situation from Fig.5b3, the average density of population as a 
function of k, x*(k), matches well with function f(k)=1-1/k. For small values of k (small 
population density) strips are getting unstable and they collapse into clumps. However, the 
number of rows remains the same for a given system size (M) and for the value of competition 
radius r (assuming dispersal R=1). It is easy to asses that the estimated number of rows is then: 

(15)                                                           1 
3
2int +






≈

r
Ml  

This stable dynamics and patterns become more and more chaotic with decreasing r/R ratio and 
with increasing r. When the ratio approaches 2, the spatial distribution becomes completely 
chaotic and the whole system behaves in the logistic way.  
 

  

   

a b

c d

 
 
Fig.10 The regular and stable patterns created by the discrete “correlated” CA system for, M=200, R=1 and 
r=30: a) k=1.15, t=3000, x*=0.13; b) k=1.4, t=600, x*=0.31; c) k=2, t=600, x*=0.51; d) k=4, t=600, 
x*=0.73, where t is the number of time-steps and x* is the average population density. From Eq.15 the 
number of rows is l=7. 
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The reverse situation, that is, when dispersal (R) is greater then competition (r) and R/r>1, is less 
realistic. On the one hand the tight competition destroy dense cluster. On the other, it creates them 
in the empty areas, which are sufficiently close to the clusters. The large dispersal stabilizes 
average population density. This alternate interactions cause that for k>2 instead of stable 
streaks_and_clumps patterns, only oscillating streaks are observed. Otherwise, for k<2, the 
population distribution on the lattice becomes chaotic. In the both cases the average density x* is 
constant in time if R>>r. As shown in Fig.8, if R/r→2 and R is comparable to the lattice size, the 
period doubling bifurcation is observed and x* starts to oscillate. We do not observe, however, 
any bifurcation cascades and any signs of chaos characteristic for logistic dynamics. By assuming 
different shapes of the local neighborhood inspected (e.g. more realistic circular shape instead of 
rectangular neighborhood considered here), heterogeneous environment and high diversification 
of the population, more sophisticated spatial patterns can be created (see e.g. [6,7,8,14,19,20,25]).  
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Fig.11 The phase diagrams and the average population density as the function of time for the discrete 
“correlated” population with two “reverse” dispersal/competition (r/R) ratios. 
 
 
4     Concluding remarks 

 
There are many reasons why the ecological models, like the logistic equation, fail to give an 
adequate description of the population growth [4]. However, there are two factors of fundamental 
importance - neglected in simplistic models - which influence the population dynamics the most:  

1. the space in which the colony evolves, 
2. the variety of ways the individuals interact with their neighbors.  

The microscopic interactions are defined, as a combination of an explicit mathematical formula 
and the size&shape of the neighborhood influenced by a single individual. In more advanced 
models the interactions between the colony and environment, the heterogeneity of the two and 
external agents must be considered. But here, we do not discuss these factors assuming that they 
are of secondary character.    

Both the space and interaction rules are tightly coupled. Therefore, the final spatio-
temporal dynamics and emergent phenomena are just a consequence of heavy feedback between 
the spatially extended environment and the ways the individuals interact.  So, there is no curiosity 
in that the logistic equation can fail in describing time evolution of many organisms. More 
intriguing is the question why in many cases the logistic pathway matches the realistic patterns of 
population growth.  In this paper we tried to answer when such the fundamental factors like space 
and interactions cancel out and the spatially extended system behaves according to the scenario 
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described by the logistic model. We studied these problems modeling the spatially extended 
population on the CA lattice. 

We considered first the CA lattice of tightly coupled logistic systems represented by 
cellular automata with continuous states. This system mimics a large population of many 
subpopulations interacting with their local neighbors according to the semi-logistic rule (Eq.5). 
We showed that the global behavior of this system (i.e. the time evolution of the average 
population density) match perfectly the logistic law for the value of biotic potential k<k∞. The 
population density becomes uniform in every time moment on the entire lattice until k<k∞. For 
k>k∞ when the chaotic dynamics is expected, the system stabilizes. However, instead of uniform 
(but oscillating in time) distribution, the population density diversifies progressively with 
increasing k. The intricate evolution of spatial patterns, represented by irregular clusters, can be 
observed. We can conclude that the global chaotic temporal behavior is transferred spontaneously 
into spatial chaos. This transition can represent a kind of self-preservation mechanisms. The 
system consisting of many subpopulations interacting according to the rule given by Eq.5 cannot 
be destabilized (be chaotic) by increasing the value of biotic potential, i.e., by increasing the 
reproduction potential of population.  

Going downscale, we considered a single subpopulation from the previous continuous 
model as a separate spatially extended system modeled on the cellular automata lattice. This time 
however, it represents colony of discrete entities. We showed that “uncorrelated”, randomly 
scattered populations evolving on 2-D CA lattice can mimic the same pathway to chaos as the 
logistic model, i.e., the evolution from stable colonies through bifurcation cascades to chaos. This 
global logistic map can be obtained for selected type of microscopic CA rules. We showed that 
the fully developed chaotic behavior (kmax=4) occurs only for infinitely large dispersal and 
competition radiuses.  For the Moore neighborhood the maximal biotic potential is kmax=3.6, a 
little bit greater than the accumulation point k∞≈ 3.5699, i.e., the moment of onset of chaos. For 
von Neumann neighborhood (kmax=3,33(3)) only the first bifurcation can occur. Due to random 
scatter, the population distribution is approximately uniform and only small, random patterns 
develop. 

The same rules were applied for motionless (without scatter) CA system with limited 
neighborhood capacity. However it produces only stable populations with average population 
densities remaining constant in time. Simplicity in temporal dynamics is accompanied by the 
complex spatial dynamics with dynamically changing patterns. Contrary to very similar, in spirit, 
continuous CA, the time evolution of average population density is different from the logistic 
map for every value of k. We showed that  

1. by allowing for random walk of individuals between evaluation rounds, 
2. by increasing dispersal and competition, i.e., the size of the neighborhood, 
3. by assuming a certain ratio (≈2) between competition and dispersal radiuses,  

the stable system can be transformed to chaotic or partly chaotic and be more similar to the 
logistic map.  The steady-state fragment of the logistic map (k<3) can be also reconstructed by 
the systems producing stable patterns: clumps and strips. We show that such the patterns can be 
obtained assuming the ratio of competition and dispersal radiuses large enough.  

The role of disorder and spatial patterns in control of population dynamics is well known 
[1,26,27]. Our results show that the spatially extended systems with population uniformly 
distributed in space, reproduce better the fragment of the logistic map representing bifurcation 
cascades and chaos. The populations forming dynamically changing spatial clusters and stable 
patterns behave in a different way than the logistic model and reproduce at least steady-state 
fragment of the logistic map. 

The dynamics described by the logistic map is very diverse and extends from stable 
behavior, bifurcation cascades up to the chaotic modes. The knowledge that a certain population 
matches logistic pathway to chaos may have very important consequences for its future. When the 
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average population density is oscillating or chaotic, the colony becomes vulnerable on external 
threats, e.g., pestilences [13]. Additional degrees of freedom defined by space and microscopic 
interactions between individuals allows for creating “self-preservation instinct” and more flexible 
reaction of the population on the external danger. Scrutinizing the ways the adverse effects of 
chaotic evolution can be eliminated, is fundamental to protect the colony from extinction. 
Conversely, the knowledge about the ways the chaos develops can allow for eliminating the 
structured populations, which are very difficult to destroy, and which can be very dangerous such 
as the bacterial biofilms [28].  
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