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Abstract 
 

The dynamics of growing tumor involving mechanical remodeling of healthy tissue and vasculature is 
neglected in most of the existing tumor models. This is due to the lack of efficient computational 
framework allowing for simulation of mechanical interactions. Meanwhile, just these interactions trigger 
critical changes in tumor growth dynamics and are responsible for its volumetric and directional 
progression. We describe here a novel 3-D model of tumor growth, which combines particle dynamics with 
cellular automata concept. The particles represent both tissue cells and fragments of vascular network. 
They interact with their closest neighbors via semi-harmonic central forces simulating mechanical 
resistance of the cell walls. The particle dynamics is governed by both the Newtonian laws of motion and 
the cellular automata rules. These rules can represent cell life-cycle and other biological interactions 
involving smaller spatio-temporal scales. We show that our complex automata, particle based model can 
reproduce realistic 3-D dynamics of the entire system consisting of the tumor, normal tissue cells, blood 
vessels and blood flow. It can explain phenomena such as the inward cell motion in avascular tumor, 
stabilization of tumor growth by the external pressure, tumor vascularization due to the process of 
angiogenesis, trapping of healthy cells by invading tumor and influence of external (boundary) conditions 
on the direction of tumor progression. We conclude that the particle model can serve as a general 
framework for designing advanced multiscale models of tumor dynamics and it is very competitive to the 
modeling approaches presented before.  
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1. Introduction 
 
Despite the huge amount of resources that have been devoted to cancer research, according to 
National Center for Health Statistics (http://www.cdc.gov/nchs/FASTATS/lcod.htm), cancer is 
the second killer (after heart disease) in US. The set of diseases, which are categorized as cancer, 
are characterized by serious disruptions in the control mechanisms regulating growth and 
homeostasis in normal tissue. Up to now many aspects of cancer remain obscure for 
experimentalists and clinicians, and many of the currently used therapeutic strategies are not 
entirely effective.  

A better understanding of the dynamics of tumor formation and its growth are expected 
from computer models and simulations. The modeling could improve the overall clinical outcome 
by predicting the results of specific forms of treatment administered at specific time points. 
Moreover, it might help to optimize the existing therapeutic procedures, design new ones, or even 
provide post-treatment predictions [5,21,34,43]. The degree of angiogenesis in human tumors 
varies widely and may be very low in some types of tumors. Therefore, tumors with a low level 
of angiogenesis may not be benefited when treated with antiangiogenic agents [16,21]. Computer 
modeling of tumor progression involving its both avascular and vascular phases, could allow for 
answering the question if the angiogenic therapy is justified or not in these uncertain cases.  

Nevertheless, we should be aware of the computer modeling limitations from which the most 
important are as follows: 

 
1. The replication of living organism in silico is a computationally irreducible problem due to 

impassable barriers of the theory of computation, the theory of chaos and technological 
limits. Many aspects of tumor development can be investigated on a case-by-case basis. 

2. Tumor evolution is a complex process involving processes occurring over a variety of time 
and length scales: from the DNA level and intracellular processes, through tumor 
vascularization and metastasis, to the holistic, mental and environmental factors. Up to now, 
no significant progress has been made in constructing consistent and rigorous mathematical 
formalism and computational methodologies, which can exploit efficiently current 
computational resources and programming paradigms in modeling truly multiscale 
phenomena.  

3. Even well known physical processes occurring in the real tissue, such as diffusion and blood 
flow, which can be described using partial differential equations (PDEs), are very difficult to 
simulate. This is due to the intricate boundary conditions imposed by heterogeneous 
environment (e.g., extracellular matrix (ECM) structure, blood vessel structure, blood 
rheology etc.), incomplete parameter space and non-linear reaction terms. 

 
Although global modeling of cancer development is impossible, more selective approach 
focusing on basic carcinogenic processes can allow for substantial reduction of both many 
methodological problems and computational resources. The approximate theories and numerical 
models can be used then to detect more precisely the cancer �weak points� - the future targets of 
anticancer therapeutic strategies.  
 We focus our attention on the process of tumor growth from avascular phase to 
angiogenic phase, i.e., the process of the blood vessel formation from a pre-existing vasculature. 
Judah Folkman published in 1971 the theory [19] that angiogenesis is a principal process in tumor 
progression [17,20]. Vascularized tumor invades the surrounding tissue, blood and lymphatic 
vascular systems and the possibility of the cancer spreading (metastasis) increases dramatically. 
Antiangiogenic targeting of the neovasculature within tumors is currently considered as one of 
the most promising strategies in the search for novel antineoplastic therapies [3,19,21]. Because 
molecular phenotype of immature, angiogenic blood vessels is distinctly different from that of 
resting blood vessels, tumor blood vessels can be selectively targeted without affecting the 
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normal organ vasculature. The process of angiogenic signaling and formation of blood vessels 
can be disrupted or slowed down with small molecules. In addition to treatments directed to 
specific target, non specific agents can be used to eliminate endothelial cells thus inhibiting 
angiogenesis. This involves numerous expensive and demanding investigations both of hundreds 
of factors inhibiting angiogenesis and antiangiogenic chemical species which can be considered 
in drug design process. To cut expenses, the predictive power of mathematical modeling and 
computer simulation has to be employed. As shown in [6], in silico experiments can play the role 
of angiogenesis assays. 

In the following section we shortly describe the main processes, phenomena and growth 
factors contributing cancerogenesis. Then we present the most advanced models of tumor growth 
including continuum, cellular automata and hybrid models. We focus on such the modeling 
aspects as cell cycle, tumor growth factors, angiogenesis, blood flow and vessel remodeling.  
Next, we describe the model of complex automata driven by particle dynamics and we discuss its 
assumptions, limitations and simulation conditions. The following section collects the results 
from simulation of avascular and vascular phases of tumor growth. We scrutinize the role of 
mechanical interactions between swelling tumor, normal tissue and expanding vascular network 
on tumor dynamics. We explain the influence of mechanical interactions on compartmentalization 
of the avascular tumor into external shell of well oxygenated cells, deeper layer of cells in 
hypoxia and necrotic interior. We study the effect of mechanical remodeling on tumor 
progression in vascular phase and on differentiation of microvascular density in various regions 
of tumor. The role of processes involved in branching and vessels maturation, such as (Dll4) � 
Noch1 signaling [25,39], is also analyzed. The results are confronted with experimental studies. 
For simplicity we do not discuss a parallel to blood vessel, lymph vessel network which assist 
normal tissue and tumor with lymph outflow and decrease in extracelullar matrix pressures. This 
network is a critical component of tumor metastases pathway. However, it is only minimally 
involved in dynamics of tumor growth. In the last section we present the conclusions. 
 
2   Simplistic model of tumor growth 
 
Generally, we can recognize a few principal phases of tumor progression, representing various 
spatio-temporal scales [1,5,32,40]. 
 
1. Subcellular scale - involves genetic changes, distortion in the cell cycle and loss of apoptosis, 

absorption of vital nutrients. 
2. Cellular scale � comprises interaction and competition at the cellular level with immune and 

environmental cells, activation and inhibition of the immune system. The cellular scale refers 
to the main activities of the cells: activation and proliferation of tumor cells and competition 
with immune cells. 

3. Avascular tumor scale � includes condensation of tumor cells into cluster, macroscopic 
diffusion of TAF (tumor angiogenic factors) and oxygen. 

4. Angiogenic phase � involves angiogenesis, sprouting, anastomosis, angiogenesis termination. 
5. Vascular phase � includes blood flow, remodeling (vessel dilation and regression, mechanical 

reshaping of tumor and vessels), vessel maturation. 
6. Detachment of metastases and invasion. 
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Fig.1. The scale separation map of all the main processes considered in modeling of tumor-induced 

angiogenesis. The processes controlled in our model are colored blue. 
 

In Fig.1 we present the scale separation map (SSM) for this simplified model of tumor growth. 
The microscopic processes such as cell motility and cell cycle are discrete. The macroscopic scale 
refers to phenomena which are typical for continuum systems such as diffusion (of oxygen and 
TAF), overall tumor condensation and blood flow. In macroscopic models, microscopic phases 
can be approximated by coarse grained models as long as the methodology of multi-scale 
simulation and adequate computational resources are lacking. The arrows in Fig.1 show the 
relationships between these processes. The particle model presented in the following sections 
refers only to the processes shaded in blue.  

Four overlapping phases of tumor growth are usually identified: the avascular phase, the 
angiogenic phase, the vascular phase and vessels and tumor remodeling. These phases go with 
physical processes such as nutrients and TAF diffusion, blood flow and mechanical remodeling 
caused by interaction between growing tumor, vessels and the normal tissue. 
 
Avascular tumor: 
The proliferating tumor cells start to condensate into a compact cluster and interact with the 
external environment. Solid tumor, which is smaller than 1-2 mm in diameter (about 106-107 cells 
[3]), removes wastes and acquires nutrients and oxygen through passive diffusion. The oxygen 
(and nutrients) is supplied to the tumor nucleus by the closest, mature blood vessels. It percolates 
through the surface of the solid tumor and diffuses inside its body. Due to differences in 
concentration of oxygen, the tumor cluster consists of the outer region with proliferating cells, an 
intermediate region of cells in hypoxia and the necrotic core of dead tumor cells. Most solid 
tumours, even those 1�3mm in diameter, exhibit hypoxic fractions that may range from 10 to 
30% [3,30,41]. The avascular tumor is in dynamic equilibrium. Its critical mass has been reached, 
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and diffusion based transport is no longer efficient for proliferation-dominated growth. Tumor 
size is regulated by proliferation speed, oxygen penetration depth and the external pressure [41].  
 
Angiogenesis: 
As shown in Fig.2, the tumor-induced angiogenesis is initiated by tumor cells with the shortage of 
oxygen supply. The cells trigger the release of tumor angiogenic factors (TAF) [7,17,19,20,33]. 
Among many tumor growth factors, Vascular Endothelial Growth Factor (VEGF) has been 
identified as one of the key components [7]. VEGF cytokines, released from the tumor cells in 
hypoxia, diffuse through the extracellular matrix (ECM) � the biological material between tumor 
and existing vasculature - and produces a chemical gradient. Once VEGF has reached a vessel, it 
binds to the receptors located on endothelial cells lining blood vessel walls. This stimulates 
several enzymes (e.g. metalloproteinases) to degrade of basement membrane and sets off a 
cascade of events which triggers the outgrowth of new vessel sprouts [7,19,20]. Endothelial tip 
cells proliferate and migrate through the ECM. The tip cells follow along the VEGF gradient 
towards regions of higher concentration (chemotaxis) [45]. As shown in [7,45], in addition to the 
soluble isoform of VEGF, the presence of other VEGF isoforms significantly influence 
morphology of capillary network formation.  

After initial sprouts have extended into the ECM for some distance, repeated branching 
of the tips can be observed. This causes numerous tip-to-sprout transitions. The newly formed 
vessels may form loops in a process called anastomosis. Along with anastomosis, the formation 
of lumen establishes a network that allows the blood circulation. The blood starts to circulate in 
the parts of network with nonzero blood pressure gradient.  

There exist many other important factors which both promote and inhibit the process of 
angiogenesis (e.g. see [7,17,20,32,45]). Some of them will be discussed in the following sections. 
 

  

  
 

Fig.2. The scheme of tumor-induced angiogenesis. 
 
Vascularization: 
Tumor vascularization is a complex process of vascular network development. It is initiated by 
the process of angiogenesis and begins with the formation of a primary capillary plexus. Once the 
sprouts approach the tumor, their branching dramatically increases until the tumor is eventually 
penetrated by vascular network. Due to better oxygenation, the concentration of TAF decreases 



 6

also inside the tumor. However, the newly formed vessels are subsequently remodeled by the 
growing tumor and pushed away producing regions of lesser concentration of oxygen, which 
initiates TAF production. This stimulates simultaneous growth in size of both tumor and its 
vasculature [16, 21, 41].  

Tumor vessels can be segregated into three categories [16].  
1. Immature - highly proliferative, nonperfused endothelial cell (EC) sprouts emanating from 

functional vessels.  
2. Intermediate - small, perfused vessels which lack support from mural, smooth muscle cells, 

and pericytes.  
3. Mature - larger vessels, which have recruited pericytes, and smooth muscle cells with 

quiescent ECs and few associated sprouts.  
 
Tumor vessels develop through these stages, beginning with treads of endothelial cells sprouting 
from functional blood vessels.  
 
Remodeling: 
The process of tumor vascularization never becomes quiescent because the primitive vessels are 
continuously remodeled by dynamically evolving angiogenic factors, mechanical forces exerted 
by growing tumor, blood flow, and intraluminal thrombosis.  

Local modifiers of vessel reshapining include growth factors, pericytes, extracellular 
matrix (ECM), and neighboring cells, such as smooth muscle cells, fibroblasts and macrophages. 
For example, inhibition of VEGF results in significant increase in EC apoptosis [9] contributing 
to fast regression of newly formed vessel. The inadequate pericyte coverage is also the reason of 
vessel decay [9,16,38]. As shown in [2,35], the ECM density and its structure modify the 
direction of growing vessels. The results shown in [35] confirm different degrees of tumor 
perfusion or vascularization, depending on the ECM heterogeneity. The vessel wall is not always 
formed by a homogenous layer of endothelial cells. Instead, it may be lined with neighboring 
cancer cells and endothelial cells [7] changing vessel functionality. 

Global vessel modifiers are: the blood flow and mechanical remodeling involved by the 
interactions among growing tumor tissue, normal tissue and vasculature. High pressure and shear 
forces of blood exerted on vessel wall cause its perfusion and dilation. Both the dilated vessels 
and EC treads without circulating blood collapse. Vessel collapsing in the interior of the tumor 
initiates percolation process which is driven towards criticality - the percolation threshold - using 
a mechanism of vessel stabilization by increased blood flow in the remaining vessels [41]. Blood 
flow is also the source of both shear stress-dependent and pressure-dependent vessels reshaping 
[22]. However, the most robust remodeling factor is the mechanical interaction between the 
tumor cells, normal tissue cells and vasculature. The high pressure exerted on the vessel walls can 
make them collapsing. The mechanical forces may change also the location of vessels, 
destabilizing the tumor growth and changing its direction [41,43].  

 
3  Computer models of tumor growth 
 
Mathematical modeling of angiogenesis extends back a number of years [5,6,10,32,34,40, 
42,43,44]. The modeling concentrates on key events such as the response of endothelial cells to 
tumor angiogenic factors secreted by a solid tumor, endothelial cell proliferation, endothelial cell 
interactions with extracellular matrix macromolecules, capillary sprout branching, blood flow and 
vessel maturation. The substantial difference with respect to the physical models is that the 
microscopic state of the cells is defined not only by mechanical variables, such as position, 
velocity, pressure, but also by internal biological microscopic phenomena reflecting activities of 
the cells.  
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A large bibliography about mathematical models of tumor growth driven by the process 
of angiogenesis can be found in two books edited by Adam and Bellomo [5] and by Preziosi [40] 
and in more recent overview by Mantzaris et al. [32]. Three major categories of models of tumor-
induced angiogenesis can be recognize: (a) continuum models that treat the EC and chemical 
species densities as continuous variables that evolve according to a reaction-diffusion system, (b) 
mechanochemical models that incorporate some of the mechanical effects of EC-ECM 
interactions (c) discrete, cellular automata or agent based models in which cells are treated as 
units which grow and divide according to prescribed rules (d) hybrid multiscale models involving 
processes from micro-to-macroscale. 

Continuum models only incorporate the chemical interactions between the EC and the 
environment. Among the continuum models, Greenspan proposed some of the earliest 
mathematical description of tumor growth [23]. His models of avascular tumor growth were 
formulated as moving boundary problems, in which the solid tumor grows in suspension. The 
continuum models do not allow for cellular heterogeneity within the tumor mass, and the 
treatment of the mechanical properties of the tissue is rather simplistic. Moreover, they neglect 
mechanical interactions between vasculature and its environment. Some types of mechanical 
interactions were incorporated into mechanochemical models introduced in [23,31,46]. However, 
despite continuum models can provide significant insight into the relative role that different 
process play in the formation of vascular network; they cannot predict its structure. Within these 
models, it is not possible to capture such the important events as repeated sprout branching and 
the overall dendritic structure of the network.  

In contrast to continuum models, many types of discrete techniques, have been presented 
in the literature to explain and describe the branching morphology of the vascular networks. 
There are, for example, percolation models [8], Eden models [30,41], random walk and diffusion 
limited aggregation (DLA) models [2], cell based models [4], lattice models and cellular 
automata [11,36,48]. Unlike in the continuum models, discrete models can follow individual cells 
and can reveal more details about cell dynamics and its interaction with the tissue.  

Discrete models are usually hybridized with continuum approaches in which molecular 
species are represented by their concentration while migrating EC tip cells are mimicked by 
particles [6,35,45]. The Stokes-Lauffenburger [45] model is one of the oldest hybrid models 
simulating two-dimensional spatial distribution of sprouts. It uses s classic Folkman simulation 
conditions [19]. The domain is a square (box) of surface S (volume V). The tumor is located at 
the top center of the domain and the capillary at the bottom. All of the boundaries have no flux 
conditions for cells and TAF. The evolution of molecular species is governed by reaction-
diffusion equations that are discretized on grid. The particle, which dynamics on the TAF 
concentration field is described by a stochastic differential equation, simulates the migration of 
EC tip cells. This approach is the source of many other hybrid models (e.g., 
[1,2,6,11,35,30,48,51]) which differ in: 

 
1. methodology of simulation of the process of vascularization and tumor growth (stochastic, 

deterministic, cellular automata, lattice-gas, DLA etc), 
2. modeling accuracy and its depth - defined by the number of factors and subprocesses 

included in the model, 
3. assumptions about geometrical properties of the simulation such as: dimensionality (2-D, 3-

D), discretization of space and time (on-grid, gridless), structure of vascular network (rigid, 
structured, unstructured) etc. 

  
One of the most popular paradigm used for modeling tumor growth are cellular automata (CA) 
(see the critical overview [36]). Cellular automata deal with the dynamics of discrete elements 
populating the nodes of structural (mostly rectangular) grid. The elements take their state from a 
discrete (finite or infinite) space of states and evolve in discrete space and time. The dynamics of 
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the elements is defined in terms of local, either deterministic or probabilistic, rules. Many models 
incorporate modifications to the classical definition of a CA hybridizing it, like in the Stokes-
Lauffenburger model [45], with continuum fields of diffusive substances, such as nutrients or 
signaling substances.  CA models, however, typically do not address the important mechanical 
interactions between the tumor and healthy tissue. Complex automata (CxA) are a generalization 
of cellular automata and represent a scalable hierarchical aggregation of CA and agent-based 
models [27]. The components represent a sub-system operating on its typical spatial and temporal 
scales. Globally, CxA can behave either as the classical CA nodes on a structural lattice or as 
interacting particles whose dynamics is described by the Newtonian laws of motion or stochastic 
laws. These CxA can be an interesting framework for the development of the multiple scale 
models. 

The accuracy of the computational model is defined by its correspondence to the multiple 
processes and multiple scales involved in tumor growth (see Fig.1). Because of the complexity of 
the entire process, many models to date focus on single key subprocesses, disregarding their 
interactions with others. Many attempts assume either a static tumor and concentrate on dynamic 
vascularization in the absence of tumor growth [2,22,35,38,44] or a static network topology 
[11,46]. Some of them use dynamic network with blood flowing, neglecting its interaction with 
concentration fields and tissue components (e.g. [22]).   

Multiscale and multiphysic models represent the most advanced simulation 
methodologies. Multiscale models extend the moving boundary approach to incorporate cellular 
heterogeneity, intercellular phenomena and the use of more complex mechanical laws to describe 
the response of the tissue to external forces. Advanced multiscale models of tumor progression 
are presented in papers by Bellamo et al. [5] and by Alacorn et al. [1].  

 
  

 2-D 3-D 

 
 
Fig.3. Two snapshots from simulation of avascular tumor growing in two (2-D) and three (3-D) dimensions 
in similar conditions. The particle based CxA model was employed. In two dimensions the vasculature is 
unrealistically stretched and pushed away from the interior of growing nucleus while in 3-D the tumor is 
rooted by the vessels. 

 
The principal weaknesses of these impressive multiscale models are rigid geometric constrains 
which disable realistic visualization and are the sources of many serious artifacts. The reduction 
of one spatial dimension belongs to the most drastic simplifications. The 2-D angiogenesis 
models can adequately approximate only tumors developing on a flat surface. However, even for 
this case, 2-D approaches result in unrealistic and excessive tumor compartmentalization onto 
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many regions separated by vessels. This compartmentalization may produce the artifact such as 
the excessive increase of the number of cells in hypoxia in separated regions and, consequently, 
the increase of microvascular density (MVD). Other 2-D artifact resulting in excessive MVD 
increase is illustrated in Fig.3. The 2-D nucleus pushes the vascularization away from its interior, 
while for 3-D case the tumor cells outgrow the vessels.  

Other constrains like rigid structure of vascular network (e.g. in [1,30]), considerably 
limit the role of vessel remodeling in tumor progression. In [1], for example, the process of 
angiogenesis is replaced by artificial dilation of blood capillaries, without changes in vessel 
structure. Moreover, spatial anisotropy imposed by structural CA lattices (rectangular, hexagonal) 
falsifies both the structural characteristic of vascular network and macroscopic behavior of 
growing tumor.  

Disregarding all microscopic and mesoscopic biological and biophysical processes, in 
macroscopic scales tumor growth is a purely mechanical phenomenon. Mechanical interactions 
influences the most the structure of vasculature, blood flow, tumor shape and decides about its 
directional progression. Due to the lack of adequate computational framework any of existing 
computational paradigms is able to reproduce this basic process. In our opinion, this is the 
principle obstacle in creation of a truly multiscale model of tumor growth, which not only mimics 
all the chemical and biochemical inter and intracellular processes but allows for realistic tumor 
progression in macroscopic scale as well. 
 
 
4  Complex automata model driven by particle dynamics 
 
Our complex automata (CxA) model of angiogenesis follows the general principles of particle 
model described in [12,14,15]. The system, representing the fragment of tissue, is made of a set 
ΛN={Oi: O(xi,vi,ai), i=1,…,N} of particles (agents, in terms of CxA terminology [27]), where i is 
the particle index and N is the number of particles. Each particle is defined by three vectors: 
position xi, velocity vi, and attributes ai. The attribute vector a=(tp, kd, sz, tcell, thp, cTAF, cO2, cother, 
p), where: 
tp � is particle type: ∈{tumor cell (TC), normal cell (NC), endothelial cell (EC)}, 
kd � cell life cycle state: ∈ {newborn, mature, in hypoxia, after hypoxia, apoptosis, necrosis}, 
sz – cell size, 
tcell – cell age (life clock), 
thp � hypoxia time, 
ck  – concentrations of k=TAF, O2 and other factors, 
p � total pressure exerted on particle i from its closest neighbors and the walls of the 
computational box. 
In fine-grained models a particle mimics a single cell or components of ECM. Nevertheless, this 
assumption becomes very computationally demanding for modeling tumors of realistic sizes. The 
largest MD (molecular dynamics) simulation involved 2x1010 particles [52]. However, the 
number of timestep of this simulation was not so impressive (only 50-100 timesteps). These 
computational restrictions impose current limits on spatio-temporal scales simulated by our 
particle model. Tumor of 1 mm in diameter consists at least of a million cells [3]. To simulate the 
proliferation of tumor of this size, located in a fragment of tissue of 8 mm3 in volume in 3-D, one 
needs at least 1.6x107 particles simulated in 105 timesteps. This requires approximately the same 
computational resources as the largest MD simulations. 

However, particle method can also be used in its coarse-grained form [15]. In particle 
models, such as DPD (dissipative particle dynamics) [58,12], FPM (fluid particle dynamics) 
[59,14] or SPH (smoothed particle dynamics) [60,15], the particle can represent the cluster of 
atoms or molecules. The clusters interact with each other via a central potential such as in the 
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pure MD method. This time, however, the interaction is different than for MD. It usually consists 
of conservative (repulsive), dissipative and Brownian parts [58]. In a similar way, we can assume 
that in our coarse-grained model a particle can represent a fragment of tissue with additional 
attributes, such as concentration of normal, tumor, EC cells and extracellular matrix ingredients. 
By defining cluster size (the model granulation), this approach allows for simulating tumor 
growth in various spatio-temporal resolutions.  

Unlike in purely fine-grained particle model, where all cells and tissue ingredients are 
represented by particles, in our model a particle represents a single tumor or normal cell in ECM 
envelope. Thus, some ECM properties, such as density, can be reflected in parameters of cell-cell 
interaction model.  

In truly fine-grained model, the vessel walls had to be made of small and thin endothelial 
cells. Moreover, sprouting and bifurcation of vessel tip is a very complex biological process 
involving tens of cells, many growth factors, chemical species and ECM structure [9,17,32,45]. 
For the sake of simplicity we assume here that the vessel is constructed of tube-like �particles� � 
EC-tubes - each made of many endothelial cells. As shown in Fig.4, we define three types of 
interactions: sphere-sphere (A), sphere-tube (B), and tub-tube (C).  

The spherical particles interact with each other via short-ranged forces, which mimic both 
mechanical repulsion from the cell walls and adhesive forces. We assume that the interaction 
potential Ω(dij) (shown in Fig.4D) consists of repulsive core and attractive tail and is defined as 
follows: 
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where dij is the distance between cell walls. In more advanced models, tumor and normal cell 
interactions can be represented employing different interaction parameters a1,2 due to different 
mechanical properties: elasticity and adherence of normal and tumor cells [1,26,32]. The 
interactions between spherical cells and EC-tubes have similar character. We assume that despite 
the elongated shape of the tube the interactions are central. The tube-tube interactions are also 
central. This assumption is justified because torque will not produce remarkable effects for slow 
and highly dissipative tumor dynamics. Moreover, by neglecting angular momentum, we can 
reduce computational load required for numerical integration of equations of motion. Only the 
tips of interacting tubes can fuse them together. Consequently, the chain of tubes forms blood 
vessels such as in Fig.4C and in Fig.8. 

The particle dynamics is governed by the Newtonian laws: 
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where mi, ri and Vi are the mass, position and velocity of particle i, respectively, while λ is a 
friction coefficient. This set of equations of motion is solved numerically by using direct leap-
frog scheme (see overview [15]). The total forces acting on particles are calculated by using 
linked-cells method combined with the Verlet algorithm [15]. 
 The particle system representing growing tumor is very unstable. The number of cells 
increases and/or fluctuates because they can replicate or disappear. During the life-cycle, the 
normal and tumor cells change their states from new to apoptic (or necrotic) according to their 
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individual clock and oxygen concentration. The cells of a certain age and size and being well 
oxygenated undergo the process of �mitosis�. They split into two daughter cells. New born cell is 
in new state and its diameter is equal to dMIN. The diameter increases with time up to dMAX, 
proportionally to the oxygen concentration. The minimum and maximum particle diameters 
depend on the model granularity. Finally, after time TN, the particles undergo apoptosis, i.e., 
programmed cell death. Consequently, dead cells are removed from the system. For oxygen 
concentration smaller than a given threshold, the cell (which is not in the necrotic state) changes 
its state to hypoxia. Such the cells become the source of TAF. The cells, which are in hypoxia for 
a period of time longer than a given threshold, die and become necrotic. We assume that in the 
beginning, the diameter of necrotic cell decreases twice and, after some time, the cell is removed. 
This is contrary to apoptic cells, which are rapidly digested by their neighbors or by 
macrophages. The diagram of the cell cycle is shown below (Fig.5). As was mention before, the 
duration of phases of the cell cycle for normal and tumor cells differs considerably. Also the 
behavior of tumor and normal cell is different. For example, the proliferation rate of tumor cells, 
which were in hypoxia state, can change. As shown in Fig.6, the cells being a certain period of 
time in hypoxia proliferate faster than those evolving in normal conditions. In Fig.7 we present 
two snapshots from simulation of growing cell cluster.  
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Fig.4 The types of particles and interactions used in the particle based model 
 

The cell cycle for EC-tubes is different than for spherical cells. In fact, EC-tubes are clusters of 
endothelial cells. The tubes grow both in length and in diameter. The vessels collapse due to a 
combination of severely reduced blood flow, the lack of VEGF, dilation, perfusion and solid 
stress exerted by the tumor. However, because the EC-tube is a cluster of EC cells, its division 
onto two adjoined tubes does not represent the process of mitosis but is a computational metaphor 
of vessel growth. Unlike, normal and tumor cells, the tubes can appear as tips of newly created 
capillaries sprouting from existing vessels. The new sprout is formed when the TAF 
concentration exceeds a given threshold. Then the �vessel particle� undergoes the process of 
�mitosis� directed to the local gradient of TAF concentration. The haptotaxis involving 
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fibronectin [6,32] is not included yet in the model. In Fig.8 we show two snapshots from 
simulation of spontaneously growing tube cluster.  
 

 
 

Fig.5. The simplified diagram of cell fate. 
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Fig.6. The diagrams illustrating different proliferation rate of tumor before (control) and after hypoxia (0, 
24 and 48 hours).  
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Fig.7 Two snapshots from simulation of growing spherical particle cluster due to mitosis of cells. 
 
The cells interact with each other not only by means of mechanical forces. As shown in [1], under 
certain circumstances, cancer cells can modify their environment. Particularly, they are able to 
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increase local acidity. Because tumor cells show greater resistance to acid concentration than the 
normal cells, they can eliminate normal cells from tumor cells neighborhood by increasing 
acidity. In our model, totalistic cellular automata rules are used to simulate competition between 
tissue and tumor cells. The decisions about survival or death of neighboring healthy cells will be 
taken comparing the intracellular concentration of acid to a critical threshold. 
 The transport of bloodborn oxygen and TAF into the tissue is modeled by means of 
reaction-diffusion equations. The distribution of heamatocrit is the source of oxygen, while the 
distribution of tumor cells in hypoxia is the source of TAF. On the other hand, the distribution of 
cells gives us the spatially distributed sink of both oxygen and TAF. We assume that the cells of 
any type consume oxygen and the rate of oxygen consumption depends on both cell type and its 
current state [49].  We assume additionally that only EC-tubes absorb TAF. TAF is washed out 
from the system due to blood flow. Of course, one could employ more detailed models involving 
VEGFb absorption in ECM [35], however, at the expense of considerable increase of 
computational load.  
 Diffusion of oxygen and TAF is many orders of magnitude faster than the process of tumor 
growth. On the other hand, the blood circulation is slower than diffusion but still faster than 
mitosis cycle (see Fig.1). Therefore, we can assume that both the concentrations (of oxygen and 
TAF) and hydrodynamic quantities are in steady state in the time scale defined by the timestep 
used for numerical integration of equations of motion (Eqs.3). This allows for employing fast 
approximation procedures for both calculation of blood flow rates in capillaries and solving 
reaction-diffusion equation. 
 We compute the blood flow rates employing Kirchoff�s laws (same as in [1]). We assume 
that only vessels with circulating blood (anastomosing vessels) are the sources of oxygen. 
Moreover, both the oxygen and haematocrit concentrations in blood do not change along 
capillaries and the oxygen supply is proportional to the blood flow rate. 
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C D 

 
Fig.8 The snapshots from simulation of growth of tube particle cluster due to mitosis. 
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To calculate the concentrations of oxygen and TAF we solve the reaction-diffusion equations 
numerically by using approximation theory. One can estimate a function f at position r by using 
smoothing kernels W as follows: 
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where mj is the mass, rj is the position, ρj is the density and fj is the quantity f for neighbor 
particle j, respectively. Here, n is the number of neighboring particles within cut of radius h (|r – 
rj| ≤ h). When r=ri, f(r) is denoted by fi. The smoothing kernel approximates a local neighborhood 
r within distance h. Thus, we can estimate the density ρi for a particle i at location ri by: 
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where j is the index of the neighboring particle. The kernel should be smooth, symmetric and 
satisfy the following equation: 
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We used 3D poly6 kernel proposed by Muller et al. [37].  
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The Laplacian can be approximated then: 
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We selected this kernel due to its simplicity. As shown in [37], better kernels can be used, 
however, at the cost of computational efficiency. Substituting Laplacian in the reaction-diffusion 
equation by Eq.(8) we got the following expression for concentrations ci

K of K={oxygen, TAF} in 
particle i (χK � reaction factor). When K=oxygen, then I=TAF and vice versa.  
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By solving this equation iteratively in each time-step of Newtonian equation integration, we got 
approximate concentration of TAF and oxygen in each particle location.  
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----{1.  Initialization}----------------------------------------------------------------------------------------------------- 
 
define boundary_conditions(); 
define_initial_conditions(); 
assign_simulation_parameters(); 
divide_the_computational_box_onto_sub-boxes(); 
 
for each time step:        
------{2. calculate O2 and TAF concentrations in cells and tubes locations}------------------------------------ 
       calculate_diffusion_of _O2();       {Eqs.5,7,9} 
       calculate_diffusion_of_TAF();     {Eqs.5,7,9} 
         
------{3. cell dynamics and life-cycle }----------------------------------------------------------------------------------- 
   for each cell and tube: 
            {3.1 mechanical interactions of cells and vessels}�������������������� 
               assign_ cells_to_sub-boxes;  
              {calculate_cell_interactions_within_sub-boxes_and_their_closest_neighbors for all kind of cells}     
                calculate_forces_between_cells; {both tumor and tissue cells} 
                calculate_forces_between_tubes; 
                calculate_forces_between_tubes_and_cells; 
                calculate_new_positions_and_velocities_of_cells {integrate the Newtonian laws of motion} 
                calculate_new_positions_and_velocities_of_tubes 
             {3.2 cell and vessel life cycle}���������������������... 
       change_size(); {the cell diameter is increasing for well oxygenated cells or collapses for cells in   
                                  apoptosis}     
       change_state(); {based on age, cell densities, probability of mitosis, apoptosis and necrosis } 
       update_time_counters; 
  if conditions are met: 
   proliferate();  {replication, in case of tubes chemotaxis in direction of TAF gradient} 
  if other conditions are met 
                  quiescent();   
                                else  
     apoptosis or necrosis(); {rapid size reduction to complete removal in the next steps} 
             {3.3 sprouting}����������������������������. 
         if conditions are met (e.g. TAF concentration>TAFMAX + other factors)  
                  sprout_out_new_vessels (); 
   endfor 
                 
------{4. remodeling}-------------------------------------------------------------------------------------------------------- 
         {4.1 flow}������������������������������������.. 
         calculate_blood_flow_intensity_in_vessels(): 
         calculate_pressure(); {based on pressure in neighboring vessel pipes} 
         calculate_flow();       {based on pressure diferences} 
         if conditions are met (e.g.VEGF concentration<VEGFMIN || the intensity of flow in the   
                                                        vessel<INTMIN) 
             vessel_degradation(); {for immature vessels only} 
                
          {4.2 maturation}���������������������������������... 
           if conditions are met (e.g. time counter>MAXTIME && the intensity of flow in   vessel>INTMAX) 
              vessel_maturation(); 
             
endfor. 
  

Fig.9 The main procedures of the model 
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 The particles are confined in the cubical computational box of volume V. Because the 
average kinetic energy in the system is negligible small, from the virial theorem we obtain that: 

∑
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The internal pressure increases due to increasing number of particles (cells). The increase of box 
volume V compensates the pressure increase above a given threshold. 
 In Fig.9 we show basic procedures of our CxA particle model, which include the model 
initialization phase, i.e., definition of initial and boundary conditions, and its evolution driven by 
the following phenomena, which are modeled explicitly: 

a. Newtonian dynamics of interacting cells, 
b. diffusion of oxygen and TAF, 
c. cellular life cycle modeled by CxA rules, 
d. vessels sprouting and growth, 
e. vessels remodeling due to flow and maturation. 

 
In the following section, we describe results from modeling of the tumor proliferation in both 
avascular and vascular phases by using the particle model described above. 
 
 
5    Results of modeling 
 
5.1   Assumptions and simulation parameters 
 
In this paper we do not investigate a behavior of specific cancer. We focus our attention on the 
functionality and correctness of our model as a metaphor of tumor growth. Below we discuss the 
parameters and shortcomings we employ in our model.  

The spatial scales we used in the particle model are defined by the cell diameter, the size 
of computational box and microvascular density (MVD). We have assumed that the tumor cell 
(TC) diameter is 30 µm. It is larger than in typical models (e.g. in [1,30]) (10 µm) but it is smaller 
than V-79 cell described in [53]. This is rather technical shortcoming to decrease the 
computational load. The tumor of about 1 mm in diameter would consists then of 5x104 cells 
instead of millions. The particles (cells) are confined in the computational box of size 
1.5mmx1.5mmx1.5 mm (or 2mmx2mmx2mm for the largest simulations). Total number of cells 
in the box is 105 of order. We have assumed that if the total pressure exceeds a given threshold, 
the stress is dissipated and the pressure in the box stabilizes. In order to keep it constant, those 
cells which are close to the box walls and which are the most suppressed are removed from the 
system. The initial state of the particle system at t=0 represents a regularly vascularized region of 
a given micro-vascular density MVD with a small tumor in the center (see Fig.3). Vessels are 
arranged in a regular grid with a lattice constant a=100µm. This yields MVD=100 vessels per 
mm2 in 3 dimensions. As shown in Fig.14, this structure ensures well oxygenation of modeled 
tissue fragment. 
 We have chosen the timestep of simulation assuming typical time scales of cell life cycle 
and tumor progression rates such as division time, average cell life time in hypoxia, doubling 
time of tumor volume (see Table.1). In Eden model described in [30] ∆t is set to 1h.  Due to 
dynamics of cells caused by cell proliferation and their death, in our particle model the timestep 
for integration of Eqs. (3) has to be smaller. On the other hand, because of high dissipation rate in 
the equations of motion (sufficiently large friction λ in Eq.(3)) the time-step has not to be so 
rigorously defined as for other particle methods, e.g., such as in molecular dynamics. We have 
assumed that in our simulations ∆t=0.25 h.  
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Functional vessels, i.e., the vessels with flowing blood, are sources of oxygen while the 
distribution of cells defines the spatially distributed sinks of oxygen. For computational 
tractability we assume a fixed O2 secretion rate along the vessel with a given flow intensity. This 
assumption overestimates the O2 concentration in regions with high MVD, but this does not alter 
the model outcome significantly [30]. We solve diffusion equation assuming that the diffusion 
coefficient is DO2=1.75x105 cm2/s [49,54]. The resulting O2 concentration profile is fit to 
experimental data from Fig.14. Given this initial configurations, we use Kirchoff�s laws to 
calculate the flow intensities in newly formed anastomoses and remodeled vessels. This then 
provides us with initial conditions for updating the O2 concentration profiles in the following 
simulation steps. As shown in Table 1, maximal survival time in hypoxia are considerably lower 
for normal than for tumor cells, moreover, tumor cells can survive in much lower O2 
concentration [26,33]. Diffusion coefficient for TAF is assumed to be 10-6 cm2/s [30]. The 
concentration profiles for TAF and oxygen are updated simultaneously according to Eqs.(9).  

 

  
 

Fig.14 Oxygen penetration depth for mouse according to [18]. The O2 pressure (Po2), dropped 
exponentially and reached plateau values of 3 mmHg at around 200 µm away from the blood vessel. 
Assuming that critical Po2 for healthy tissue is about 8-10 mmHg while about 2-4 mmHg for tumor cells [  
], the average distance to the hypoxic TCs should be about 150 µm. The red curve is the exponential fit of 
experimental data.  

 
At the beginning of simulation, apart from the grid of vessels, the box is filled with only normal 
cells. Tumor growth always starts from a small number of tumor cells located in the box centre. 
We assumed that the normal cells do not proliferate and their life-time is very long. However, 
they can die due to necrotic factors like hypoxia or high local acidity caused by tumor cells [1]. 
The growing tumor pushes away the vessels, opening the gap of poorly oxygenated cells. When 
hypoxic region in avascular tumor is sufficiently large to secrete enough quantity of TAF, the 
angiogenic phase is initiated [33].   

The newly formed blood vessels become functional when they form anastomoses 
allowing for blood flow due to pressure difference on its ends. Otherwise, we assume that the 
capillaries dissolve during 70 h. Moreover, nonfunctional and immature vessels are removed from 
the system after 10 h from the moment the VEGF concentration falls below a given threshold.  
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The vessel maturation is controlled by the density of pericytes [9,16,32,38]. The varying 
degrees of pericyte recruitment indicate differences in the functional status of the tumor 
vasculature. In our simulations we assume very simplistic model of vessel maturation. The 
regression time depends on the local density of EC tubes. If the density is too high regression 
time is shorter. Dll4 regulates the sprouting rate. The lack of Dll4 results in excessive sprouting of 
newborn vessels.   As shown in Table 1, some simulation parameters such as those defining 
particle-particle interactions are specific for our particle model and cannot be measured 
experimentally. The others, like pressure limits and energy dissipation rates were set heuristically 
on the base of observation of the model behavior. The majority of measurable biological 
parameter is typical for similar type of computer modeling presented in [1,6,30,32]. The main 
parameters are collected in Table1. 
 

Table.1 Main simulation parameters (p.u. � program units) 
 

1. global physical and numerical parameters 
name description values units 
time_step The length of timestep 0.25 h 
no_timesteps Typical number of timesteps 104- 105  
box_size The size of computational box 1-2 mm 
no_cells Typical total number of cells simulated up to 3x105  
diffusion_coef_TAF Diffusion coefficient of TAF 0.002 p.u.1 
diffusion_coef_O2 Diffusion coefficient of O2 0.035 p.u. 
force_cut_off Cut-off radius in forces calculations 30 µm 

2. biological and local physical parameters 
a. tumor cells 

tc_mass Mass of cell 0.5-1 p.u. 
tc_diameter Diameter of mature cell 30 µm 
tc_mitosis_rate Doubling time for tumor 200 h 
tc_nutrient_consumption O2 consumption speed in cell 0.12 p.u./h 
tc_nutrient_mitosis Minimal concentration of O2 for mitosis 6 mmHg
tc_nutrient_hypoxia Min-Max concentration of O2 in hypoxia 2-5 mmHg
tc_max_hypoxia_time Maximal life time in hypoxia 50 h 
tc_grow_speed Cell growth rate 0.2 µm /h 
tc_min_mitosis_size Minimal cell size for mitosis 90 % 
tc_taf_generation TAF generation rate 0.1 p.u./h 
tc_force_in(out) Coefficient of cell-cell interactions 0.001 p.u. 
tc_mitosis_pressure_limit Pressure inhibiting cell mitosis 0.3 p.u. 
tc_grow_pressure_limit Pressure inhibiting cell growth 0.5 p.u. 
tc_shrink_speed Speed of necrotic cell shrinking 10 µm /h 
tc_dead_age Maximal time rate of dead cell removal  10 h 
tc_dead_reduction Radius reduction rate for dead cell 1 µm /h 

b. healthy cells 
hc_mass Mass of cell 0.5-1 p.u. 
hc_diameter Diameter of cell 30 µm 
hc_max_live_age Maximal life time of cell 5000 h 
hc_nutrient_consumption O2 consumption speed in cell 0.12 p.u.h-1 
hc_nutrient_mitosis Minimal concentration of O2 for mitosis 10 mmHg
hc_nutrient_hypoxia Min-Max concentration of O2 in hypoxia 5-7 mmHg
hc_max_hypoxia_time Maximal life time in hypoxia 5 h 
hc_force_in(out) Coefficients of cell-cell interactions 0.001 p.u. 

                                                 
1 p.u. - program units 
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hc_shrink_speed Speed of necrotic cell shrinking 10 µm /h 
hc_dead_age Maximal time rate of dead cell removal  20 h 
hc_dead_reduction Radius reduction rate for dead cell 1 µm /h 

c. vessel tubes 
vc_mass Mass of EC tube 2.3-5 p.u. 
vc_diameter Diameter of EC tube 10-50 µm 
vc_ length The length of the EC tube 70-150 µm 
vc_tip_mitosis_rate Doubling time for vessel tip tubes 200 h 
vc_grow_speed Growth speed 0.2 µm/h 
vc_thicken_speed Thickening speed 0.002 µm/h 
vc_min_mitosis_size Minimal tube diameter for division 95 % 
vc_branch_taf_trigger TAF concentration allowing for sprouting 0.00005 p.u. 
vc_force_in(out) Coefficient of tube-tube interactions  0.001 p.u. 
vc_glue_force Coefficient of forces gluing tubes in vessels 0.005 p.u. 
vc_mitosis_pressure_limit Pressure inhibiting cell mitosis 100 p.u. 
vc_grow_pressure_limit Pressure inhibiting cell growth 100 p.u. 
vc_max_flowless_time Regression time allowed for non-functional vessels 40 h 
 
 
5.2   Modeling of avascular phase of tumor growth 
 
Because the size of computational box is about 1.5-2 mm, we assume that the diameter of 
avascular tumor does not exceed 0.5 mm. It means that the thresholds on vessels sprouting must 
be kept on such the level that TAF secretion from hypoxic part of tumor is not sufficient to 
initiate the process of angiogenesis. The other factor, which controls the tumor growth rate, is the 
pressure computed from Eq.(10). As shown in Figs.3,15, swelling tumor pushes away the 
capillaries increasing the space of poorly oxygenated cells in its interior. The nodule after being 
exposed to the critical stress, gradually relaxes its stress allowing the pathology to continue 
expanding. At the beginning the pressure weakly constrains tumor progression. However, as 
shown in Fig.17, after an initial exponential growth phase leading to tumor expansion, growth 
saturation is observed even in the presence of a periodically applied nutrient supply. This 
observation is in a good correspondence with experimental results [Folkman and Hochberg, 
1973]. A section of the tumor spheroid, shown in Fig.15, displays a layered structure: A core zone 
composed mainly of necrotic material is surrounded by a thin layer of quiescent tumor cells and 
an outer ring of proliferating tumor cells. It is crucial to understand the processes, which are 
responsible for the growth of a layered and saturating tumor. 

With increasing size and cell number, the spheroid requires more oxygen (more energy). 
Since the nutrient concentration is the lowest in the center of the avascular tumor, cells will starve 
here at first and may eventually die (necrosis). Under necrosis cells swell and burst, forming a 
necrotic site. The necrotic center collects the necrotic remains, and is much �softer� than living 
cell layers [11]. The external pressure stimulates the mixing phenomenon similar in spirit to 
Rayleigh-Taylor instability boosted additionally by spherical geometry of the particle system (see 
[13]).  
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Fig.15. The snapshots from 3-D simulation of avascular tumor. The tumor from Fig. B is stable and its size 
does not increase any longer. Figs C and D shows the cross-sections through the tumor from Fig. B.  The 
tumor diameter is about 0.35 mm. The initial distance between the vessels is 0.15 mm. Only tumor cells are 
shown. Blue particles are well oxygenated cells; green represents hypoxic cells, and black necrotic center. 
The tissue cells are invisible and we assume that they are well oxygenated.  

 
As shown in Fig.16, the cells from the outer shell are pushed towards the necrotic center.  
Initially, the inward flow is slow since the necrotic core is not existing or small. Consequently, 
the outmoving cell population dominates, i.e. the tumor expands. Later on, if the necrotic core has 
reached a critical size, the inward motion takes over which limits further tumor growth. 

The experimental work by Dorie et al. [55] confirms this observation. They showed that 
there are not only cells moving towards the periphery but also there is a significant number of 
proliferative and quiescent tumor cells moving from the periphery towards the core area. This 
inward cell motion is a necessary condition for growth saturation of avascular tumor. If there 
would be no cell flowing towards the center but only stationary cells and cells moving in the 
direction of the outer shell, constant oxygen delivery would imply unbounded tumor growth. 

This "antagonistic growth direction" was explained in [11] by the chemotaxic migration 
of tumor cells into the direction of the maximum necrotic signal gradient. Accordingly, the 
authors [11] assumed in the model that a diffusible signal emitted by bursting tumor cells is 
attracting living tumor cells. In our opinion, explanation of the inward cell motion by chemotaxis 
directed to the necrotic center is superfluous in the context of Occam razor principle.   

As shown in Fig.17, higher external pressure produces tumors of smaller volume. 
However, this effect is not spectacular. Considerable increase of the external pressure (two times) 
results in rather small (10%-15%) decrease of tumor volume and causes that also the volume 
fraction occupied by quiescent cells decreases (by 20% in Fig.17). Most solid tumors, even those 
1�3mm in diameter, exhibit hypoxic fractions that may range from 10 to 30% [56]. On the other 
hand, the size of necrotic center cannot shrink to be too small to stop the inward motion of cells.  
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Fig.16. The snapshots from similar simulation as this shown in Fig.15. The figures illustrate the inward 
motion of tumor cells from the tumor surface to its necrotic interior. The three arrows of various colors 
show the cells which disappear, one by one, in the necrotic tumor center. 
  

 
Fig.17. The plots representing the number of TCs � the total number of tumor cells, cells in hypoxia, and 
dead cells - with time in growing tumor (see Fig.13) under different external pressure exerted by the tissue 
on the tumor body. The filled symbols denote the plots representing the tumor growing in 10% softer tissue 
than the tumor evolution represented by the plots with open symbols. 
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Fig.18. The cross-sections of avascular tumors (A,B) and tumor with vascularization (C). The tumor 
diameters are about 0.45 mm (A) and 0.55 mm (B,C). Unlike the tumor from Fig.A, the tumor from Fig.B 
has a few necrotic centers. The tissue cells are invisible and only tumor cells are shown. Blue particles 
represent well oxygenated cells while green and black cells are hypoxic and necrotic, respectively. 
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Fig.19. The histogram of vascularization around the pre-angiogenic tumor. Blue bars show the 
microvascular density in the absence of tumor. 
 
Its size should be adequate to guarantee the stabilization of the tumor proliferation. We can 
conclude that high external pressure can decrease the hypoxic fraction of avascular tumor below a 
threshold required to initiate the angiogenic processes. Such the quiescent tumor can remain of 
the same size for years until the drop of external pressure. It can be caused, e.g., by tissue matrix 
degradation due to destructive influence of tumor cells (see Fig.21).  

When avascular tumor is getting larger, non-uniform remodeling of capillaries caused by 
mechanical forces (see Fig.3B and Fig.18) may result in hypoxia not only in the central but also 
in many peripheral parts of the spheroid (see Fig.18B). Deployment of additional sources of TAF 
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can accelerate the process of angiogenesis. The angiogenesis in the peripheral part of the tumor is 
even more feasible, because of high density of blood vessels on its border (see Fig.3 and Fig.19). 

As shown in Fig.18C, the process of angiogenesis eliminates the hypoxic spots. All the 
tumor cells are almost uniformly oxygenated. The angiogenic tumor growth phase commences. In 
the following section we show how the process of vascularization changes the way of tumor 
proliferation. 
 
5.3   Modeling of tumor vascularization and remodeling 
 
Because of high computational load required for 3-D simulations, i.e., small size of 
computational box, we assumed that angiogenesis initiates in a very early stage of tumor growth 
(its diameter is about 100 µm instead more realistic 1 mm). This assumption does not change too 
much the scenario of tumor progression at the start of vascularization process. As shown in 
Fig.20, increasing vascularization leads to increasing acceleration growth rate. The tumor 
evolution starts from power law type of growth with increasing power order. At this stage 
however, we cannot estimate which kind of growth is expected for larger tumor. Because of 
limited size of computational box, the growth is restrained due to increasing pressure. 
 

 
 

Fig.20 The acceleration of  tumor progression due to angiogenesis for two VEGF thresholds. 
 

The tumor evolution in bone cavity is shown in Fig.21. During unrestricted growth (no pressure 
exerted from healthy tissue) avascular tumor expands fast along the capillary (Fig.21B). In 
angiogenic phase, tumor cells fill the whole cavity to the moment when external pressure is 
higher than the internal pressure. Stimulation of bone lysis by tumor cells allows for local 
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destruction of the porous bone structure. The existing and newly formed blood vessels position 
themselves within bone matrix niches, helped by high pressure exerted by the tumor on the bone 
walls (see Fig.21). 
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Fig.21. The cross-section of 3-D tumor evolution in a bone cavity. The white motionless cells represent the 
bone. The tumor fills the cavity exerting pressure on the bone walls. 
 
In vascular phase the growing tumor produces its own vascular network with a specific 
microvascular density (MVD). MVD is used as an important diagnostic tool in cancer therapy 
[16]. However, MVD is not uniform in tumors. Therefore, a quantitative understanding of the 
mechanism that causes compartmentalization of the tumor vasculature is critical for more 
accurate assessment of influence of vascular growth stimulators on tumor proliferation. The 
mechanism leading to excessive vascularization on the peripheral of the tumor was explained in 
the previous section (see Figs.3,19). We showed that a high fraction of vessels on the tumor shell 
come from normal tissue. These vessels are stable and dense enough to stabilize neovasculature.  

The vasculature of tumor interior is in many respects different from the regular 
vasculature in normal tissues. Tumor vessels are less stable than their normal counterparts and 
when engulfed by the growing cancerous tissue they undergo regression processes. As a 
consequence, newly formed immature vessels fail functionally. Arrested blood flow in deficient 
blood vessels within tumor interior causes their collapse. This stimulates both the growth of new 
vessels in this place and increases the blood pressure in other immature vessels. The regression-
growth processes repeat all over again. As shown in [30], this process is driven towards criticality 
- the percolation threshold - via a mechanism of vessel stabilization by increase of blood flow in 
the remaining vessels. 

The functional status of the neovasculature depends on many factors. The most unstable 
are open vessels without blood flowing that dissolve quickly. Only vessels creating anastomozes 
and pass up blood have a chance to survive. Nevertheless, inhibition of VEGF, e.g. in cocultures, 
lead to a 75% increase in EC apoptosis [9] what cases vessel regression and blood leaks. All of 
these factors cause that in the most cases the MVD decreases in direction from peripherals to the 
tumor interior [16,21,30,41]. 
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Fig.22. Two-dimensional simulation of vascularized tumor evolution. The gray cells correspond to normal 
(healthy) tissue while colored cells represent tumor. The color denotes the extent of cells oxygenation 
(from blue - highly oxygenated cells, to green � cells in hypoxia). The arrows shows the tissue cells 
absorbed inside the tumor body due to mechanical remodeling. 
 

 
Fig.23. The snapshot from 2-D model of angiogenesis, showing pericyte uptake by growing vessels.  

 
As shown in Fig.22, our particle model reproduces well this highly inhomogeneous tumor 
specific capillary network. The resulting network is very heterogeneous, composed of dense and 
void regions, and has distinctly different structure from normal arteriovenous or normal capillary 
networks [21]. Moreover, the emerging tumor morphology is characterized by the 
compartmentalization of the tumor into several regions differing in vessel density, and extent of 
hypoxia [16]. This situation is clearly displayed in Fig.22, which presents the snapshots from 2-D 
simulation of tumor growth in well oxygenated normal tissue. 

Two corresponding factors regulating vessels stability are considered in our model. First, 
we can mimic the activation (inhibition) of delta-like 4 (Dll4)�Notch1 signaling [25,39]. It 
regulates the formation of appropriate numbers of tip cells to control vessel sprouting and 
branching. Inhibition of Notch signaling promotes increased number of tip cells. Conversely, 
activation of Notch leads to fewer tip cells and vessel branches. Pericytes are the second factor 
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has been suggested to play a role in regulation of vessel stability [9,32,38]. Pericytes secrete an 
inhibitor that controls endothelial growth at certain cell densities. The varying degrees of pericyte 
recruitment indicate differences in the functional status of the tumor vasculature and may reflect 
varying degrees of maturation of the tumor vascular bed.  

High inhibition of Dll4 resulting in excessive vascularization, causes that pericytes 
concentration becomes too low and vessels not supported by pericytes regress. Otherwise, for 
high activation of Dll4, as in situation shown in Fig.23, pericyte covered vessels stabilize and 
become functional. The maturation of vessels due to pericytes for high activation of (Dll4)�
Notch1 signaling were simulated using our 2-D particle model. The snapshots from this 
simulation are presented in Fig.24. 
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Fig.24. The snapshots of 2-D simulation of vascularization in tumor. The green vessels represent mature, 
pericyte covered vessels.  

 
 
6     Concluding remarks 
 
The concept of complex automata and interacting particles represent a novel framework for 
constructing multi-scale models of tumor progression. We show that this approach is competitive 
to existing paradigms based on continuum models, classical - on grid - cellular automata and 
heterogeneous sub-models. The greatest advantage of our model is the possibility of tumor 
dynamics simulation, which involves mechanical forces for simultaneous remodeling of the blood 
vessel system. Moreover, realistic 3-D dynamics of the entire system consisting of the tumor and 
other tissue cells, blood vessels and blood flow can be reproduced by using the same 
homogeneous particle model.  

Our simulation results indicated that not only redistribution and uptake of angiogenic 
factors during angiogenesis had significant effects on the structure and functionality of vascular 
networks. The results of mechanical remodeling can suggest as follows. 
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1. The layered structure of tumor can be explained solely by the self-organized growth of an 
initially small number of tumor cells.  

2. The inward motion of peripheral tumor cells to its necrotic interior can be explained on 
purely mechanical ground, without somehow suspicious necrotic chemotaxis suggested in 
[11]. 

3. Larger value of MVD on the tumor peripheral is initiated due to mechanical interaction of 
expanding tumor borders on existing vasculature. 

4. External pressure decelerate tumor growth rate and transfer a growing tumor into a saturated 
(non-growing and quiescent) regime. 

5. Our modeling support controversy surrounding Folkman�s model for tumor therapy that 
disrupting angiogenesis yields a starving tumor, which eventually dies. In our model due to 
mechanical remodeling of healthy tissue many disparate fragments of tumor become very 
well oxygeneted. Expanding tumor can push out healthy cells and use regular vasculature to 
support its growth without the need of excessive angiogenesis.  

6. The functionality of neovasculature depends on the balance between pericyte and Dll4 
concentrations.  

 
To check if the vascular networks generated in numerical simulations are really similar to the 
realistic ones we plane to validate our model. This validation will be conducted on the basis of the 
comparison between realistic images of tumor vascular networks from confocal microscopy and 
computer experiments. The comparisons will be made employing structural properties of tumor 
vascularization. The vascular networks can be described by the feature vectors with statistical 
and/or algebraic descriptors of complex networks [57] as the feature vector components. Finally, 
pattern recognition methods such as clustering and feature extraction will be used for the vector 
classification. 

The computational complexity and geometrical constraints are the main disadvantages of 
our model. The first problem result in shortcomings we used in our simulations. We applied our 
particle model to a more developed stage of tumor growth, where the tumor is likely to comprise 
millions of cells rather than thousands of cells. To solve this problem we need to define multi-
scale model and resort to parallel computing techniques. Although this certainly implies some 
degree of complication from the computational point of view, the particle model is not too 
difficult to implement in parallel [15]. The most serious geometrical constraints and 
simplifications used in our model are as follows: 

 
1. Due to limited size of computational box and growing number of cells the pressure in the box 

increases. Computationally expensive procedures have to be used to maintain constant 
pressure inside the box. 

2. The cells interaction is radial, what suggests that they are of spherical shape. Implementation 
of more realistic anisotropic interactions is very demanding computationally. 

3. We use for simplicity rigid EC-tubes instead of EC cells, what influences the shape of vessels 
and may introduce structural artifacts (see Fig.9). 

 
Our model of tumor-induced angiogenesis addresses a limited number of the involved biological 
processes. For example, blood hydrodynamics have received much less attention than in other 
models (e.g., [1,30,34,41,43,44]). We did it intentionally to reduce the computational load. 
However, we definitely agree that in larger tumors, vascular remodeling due to blood circulation 
cannot be neglected. The existing flow models (e.g. as in [30,41]) can be easily adapted in the 
scope of our particle model. For simplicity, we neglect also other phenomena. In particular, our 
model has not addressed the effect of perfusion and different concentration of oxygen along the 
vessel. Moreover, we consider only oxygen as the nutrient while tumor cells often do not require 
much oxygen for growth, but glucose, fat, and amino acids. Another area in which our model 



 28

could be improved is introduction of microscopic sub-models representing important intra 
cellular phenomena such as cell proliferation in hypoxic conditions. This challenge, however, can 
be undertaken provided that the efficient parallel version of the model will be implemented. 

In our CxA framework it is easy both to develop principal mechanisms of tumor 
dynamics such as cell proliferation, vascularization, vessels remodeling and incorporate sub-
models of other important processes like: microscopic intracellular phenomena, blood circulation 
and extracellular matrix models. The particle model can be supplemented by more precise models 
of reproduction mechanism, cell-life cycle, lumen growth dynamics, haptotaxis mechanism and 
others. Some models of intracellular phenomena can be copied directly from the work of 
Alancorn at al. [1]. Moreover, more angiogenic factors can be considered, such as various TAF 
activators and inhibitors. Instead of simplistic model of blood circulation used in our model, 
advanced blood flow algorithms from Chaplain [6] and Stephanou et al., [43,44] can be 
implemented in a straightforward way.  

For simplicity, our model does not reflect the influence of the extracellular matrix 
composition on endothelial cell migration and network formation [32]. These very 
important processes can be simulated easily employing more complicated (e.g., anisotropic) 
interaction forces between cells. One can assume, for example, that the particle represent the cell 
with a fragment of extracellular matrix. We can use then interaction forces depending on both the 
range and the angle of interactions. More realistic though more computationally demanding way 
for simulating processes occurring in ECM involves additional type of particles representing 
various ECM components. 

Most of these possible improvements will require supercomputing power to simulate 
realistic tumor sizes. This is mainly due to assumption we made that one particle corresponds to a 
single cell. This puts the upper limit on the size of simulated 3-D system to a few millimeters or 
at most centimeters when employing nowadays high performance multiprocessor systems. 
However, as shown in [14,15], particle models can be used for simulating fluid flows in various 
spatio-temporal scales by using a coarse graining procedure. We postulate that the similar 
procedure can be defined for modeling the tissue. Depending on the spatio-temporal scale of 
simulation, the particle can represent a cell, a cell with a fragment of ECM matrix, cluster of cells 
and fragments of ECM matrix, or a cloud made of mixture of cells, fragments of ECM matrix and 
microscopic blood capillaries. If such the scalability of the particle model is possible, this would 
allow for simulating tumors in various spatio-temporal scales from small avascular clusters to 
large masses.  

In summary, we showed that the CxA particle model developed in this study can be used 
as a robust modeling framework for developing more advanced tumor growth models. 
Consequently, these models can be used to evaluate effects of individual factors on angiogenesis, 
understand mechanisms of interactions among them, and generate experimentally testable 
hypotheses. 
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