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Abstract. Multidimensional scaling (MDS) is a very popular and reliable method used in feature 
extraction and visualization of multidimensional data. The role of MDS is to reconstruct the topology of an 
original N-dimensional feature space consisting of M feature vectors in target 2-D (3-D) Euclidean space. It 
can be achieved by minimization of the error - “stress” function - F(||D-d||), where D and d are the MxM 
dissimilarity matrices in the original and in the target spaces, respectively. However, the stress function is 
in general a multimodal and multidimensional function for which the complexity of finding global 
minimum increases exponentially with the number of data. We employ here a robust heuristics based on 
discrete particle method enabling interactive visualization of data for various types of stress functions. 
Nevertheless, due to at least O(M2) memory and time complexity, the method becomes computationally 
demanding when applied for interactive visualization of data sets involving M~104. We present here 
efficient parallel algorithms developed for various small and pre-medium computer architectures from 
single and multi-core processors to GPU and multiprocessor MPI clusters. The timings obtained show that 
the computational efficiency of CUDA implementation of MDS on a PC equipped with a strong GPU 
board (Tesla M2050 or GeForce 480) is two times greater than its MPI equivalent run on 10 nodes (10x 
2xIntel Xeon X5670 = 120 threads) of a professional multiprocessor cluster (HP SL390). We show also 
that the hybridized two-level MPI/CUDA implementation run on a small cluster of GPU nodes can 
additionally provide a linear speed-up. 
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1   Introduction 

Multidimensional scaling (MDS) is one of the most popular techniques used for dimensionality 
reduction and feature extraction (e.g. [1,2]). MDS is also a natural candidate as a computational 
engine for interactive visualization of multidimensional data and its visual clustering [3,4,5,6].  

The general problem which stays behind MDS is to find a bijection F: ΩΩΩΩ→→→→ΣΣΣΣ of a “source” 
space of abstract objects ΩΩΩΩ={ωi; i=1,…,M} onto a “target” vector space ΣΣΣΣ={ξξξξi=(ξ1, ξ2, ξ3, …,ξn); 
i=1,…,M} which, within a given accuracy, preserves the topological structure of ΩΩΩΩ in n-
dimensional ΣΣΣΣ space. The space ΩΩΩΩ can be an arbitrary space represented by a dissimilarity matrix 
D={Dij}MxM where Dij is a dissimilarity measure between objects ωi and ωj. It means that the 
object representation is not important in that case. The dissimilarity matrix D is the only 
information about ΩΩΩΩ.    

Correspondingly, d={dij}MxM is a distance matrix in the target n-dimensional vector space ΣΣΣΣ, 
where dij

 is a distance (e.g., the Euclidean distance) between vectors ξξξξi and ξξξξj which are the 
mappings of  corresponding objects ωi and ωj in ΣΣΣΣ. We assume that to preserve the topological 
structure of ΩΩΩΩ in ΣΣΣΣ an overall error F(||D-d(ΞΞΞΞ)||) should be minimized, where F(.) is a 
multidimensional function ℜnxM→ℜ1 and ||…|| is a discrepancy measure between dissimilarities 
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Dij from ΩΩΩΩ and corresponding distances dij from ΣΣΣΣ. Then, the matrix ΞΞΞΞ=(ξξξξ1, ξξξξ2, ξξξξ3, …,ξξξξM) which 
minimizes the error function F(.), is the result of multidimensional scaling.  

For example, let us assume that the “source” space is the space of shapes. Matrix D consists 
of the elastic distances between shapes [7]. We can map the space into target space of ellipses 
each defined by two radiuses ai and bi (i.e., ξξξξi=(ai, bj)). Distance matrix d consists of smallest 
Hausdorff distances between ellipses. Minimizing the error function F(||D-d(ΞΞΞΞ)||), the shapes 
from original space ΩΩΩΩ will be approximated by ellipses in the target space ΣΣΣΣ. Simultaneously, the 
shapes are represented by points ξξξξi=(ai, bj) in ΣΣΣΣ 2-D space. Following this way, one can find 
vector representation of shapes with an arbitrary accuracy by increasing the dimensionality of ΣΣΣΣ. 
Having vector representations of objects one can use classical machine learning algorithms for 
data mining without using complicated syntactic rules.  

The multidimensional scaling methodology has been evolving for many years [8-13]. It is 
originally defined as a dimensionality reduction procedure which transform ΩΩΩΩ=ℜN of feature 
vectors Y={yi=(yi1,..yiN)}i=1,…,M into ΣΣΣΣ=ℜn - the Euclidean space of corresponding vectors 
X={xi=(xi1,..xin)}i=1,…,M. It is assumed that N>>n. In this paper, particularly for multidimensional 
data visualization, we assume that dimΣΣΣΣ=n=3 (or 2). The error function F(.) is called the “stress 
function” and the problem of finding target configuration X can be formulated as follows: 
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In general, the distance matrix D can be non-Euclidean. Assuming that k=1/2 and m=2, wij=1/Dij

k 
we obtain the MDS version called Sammon’s mapping [13]. The distances array D defines 
unambiguously data topology in the original ΩΩΩΩ space because all of LMax=M(M-1)/2 distances 
between feature vectors are known. The mapping F() tries to reproduce the topology of ΩΩΩΩ in ΣΣΣΣ by 
matching corresponding Euclidean distances between feature vectors using mean squared error 
criterion (1). To find the minimum of criterion (1) the system of n×M nonlinear equations should 
be solved.  The number of solutions is infinite because the target configuration of feature vectors 
X is invariant with respect to all isometric transformations including rotation, axial and planar 
symmetries. Moreover, the “stress” function is usually multimodal. There are many methods used 
for minimization of criterion (1). From simple gradient based techniques [12,13] and Niemann 
steepest descent algorithm [14] which enable to find a local minimum, to elaborated heuristics 
(e.g. [4,6,15-19]) searching for a global minimum of (1).  

The high computational load is the main obstacle for employing MDS as an interactive tool 
for visualization of large datasets where M>104. Both the memory and computational complexity 
depends linearly on the number of distances LMax=M(M-1)/2 between data objects and 
exponentially on the number of local minima of the “stress function”. In general, the second 
problem is unsolvable and it can be only partially overcome by using very efficient heuristics 
based on the N-body virtual particle method solver [5,6,20,21]. However, both its time and 
memory complexity are still bounded from below by the quadratic term O(M2). 

In the following sections we present briefly the virtual particle method employed for MDS 
mapping. Then we demonstrate the developed parallel algorithms and their implementations in 
two different parallel environments: multithread multi-core CPU and GPU. We compare the 
efficiency of mapping on a broad choice of CPU and GPU processors. We present also the results 
of integration of three heterogeneous parallel environments: OpenMP, CUDA and MPI on a 
single pre-medium MPI cluster. At the end we summarize and discuss our findings demonstrating 
that by using on_the_shelf small and pre-medium computer systems the method of 
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multidimensional scaling based on virtual particle dynamics can be successfully employed for 
interactive visualization of data sets consisting of M~104 feature vectors. 
  
2 Virtual particles method as a heuristics 
 
The multidimensional scaling of N-dimensional feature space into n-dimensional target space 
where n=3 (or 2) is used for visualization of multidimensional spaces and visual clustering. In 
this case to obtain the global minimum of criterion (1) (or a solution located close to the global 
minimum) we employed the virtual particle method [5,6]. This heuristics consists in the 
minimization of the potential energy 
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representing the sum of potentials Vij(.) of interacting particles i and j (a simple example was 
shown in Fig. 1). Each particle corresponds to the respective feature vector from the source space 
ΩΩΩΩ. The interaction potential Vij(.) between particles i and j is a function of difference between 
corresponding vectors’ distance Dij in the source space ΩΩΩΩ and current particles’ distance dij in ΣΣΣΣ 
(Eqs.2). 

Initially, the particles occupy random positions in ΣΣΣΣ and their velocities are set to zero. 
The particles interact with each other via semi-harmonic forces fij=-Σj∇∇∇∇Vij(Dij-dij) and they change 
their positions and velocities according to the Newtonian laws of motion. The kinetic energy is 
dissipated by the friction force which is proportional to the particle velocity. So, the equations of 
motion are as follows: 
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where mi, γ and λ are the parameters while vi is a velocity of a particle i.  
 

 

Fig. 1. Forces acting on a particle i. 
 

 
 

a b c 

k=1; m=2; wij=1 k=1; m=2; wij=1/(Dij)2 k=1/2; m=2; wij=1  
 
Fig.2 Results of mapping of the nodes of 8-dimensional hypercube into 2-dimensional Euclidean space 
(R8→R2) by using various criterion functions (see Eq.1). 
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After a certain number of iterations the equilibrium is reached. Then the sum of potentials 
represents the total energy of the particle system in the equilibrium (Eqs.3). It is equal to a 
general form of the “stress function” given by (1). Thus, the positions of particles xi represent the 
solution of the minimization problem (1). 

The forces Fi which act on each particle i are computed on the basis of the current positions 
of particles xi. Then, the new positions of particles are calculated by using, e.g., the following 
leap-frog scheme ([22]): 
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where n denotes the consecutive time-step number. The sequential (one thread) version 
representing a single time step of the method we display in Listing 1.  
 

 
 

Listing 1   Pseudocode of a sequential version of the virtual particles MDS algorithm. 
 
The parameter values α, β and ∆t were tuned on the basis of empirical experience. We assumed 
that in every simulation the number of time-steps is constant and equal to 104, albeit it can be also 
tuned automatically to the chosen mapping error F(.). 
 As shown in [5,6], the main advantages of the virtual particle MDS over other methods 
are as follows: 
1. The method can be used for an arbitrary error criterion represented by the general formula 

(3). This allows for better exploration of multidimensional topology of data. For example, in 
Fig.2 we demonstrate the results of embedding of 8-D hypercube into 2-D target space 
employing 3 various criteria (see Eq.1). By using Euclidean distance (k=1/2) instead of its 
square (k=1, Fig 2c), we can obtain more detailed view of the feature space topology. 
Whereas, by using normalized distances or squared distances only the coarse grained 
structure can be seen (Fig.2a,b).  

2. The method efficiently explores multimodal and multidimensional domain of the criterion 
function, so the probability of finding the global minimum is high. Similarly, as it is in 
simulated annealing heuristic [23], it can be increased by decreasing dissipation rate and 
increasing simulation time. 
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3. Introducing interactively the “energy kicks” we are able to better explore the domain of the 
stress function (1). 

4. The method is entirely interactive, allowing for visual clustering [5,6] and data classification 
[24]. It means that the particles representing feature vectors can be added removed, grouped 
and stopped interactively during simulation. The same concerns simulation parameters, such 
as the time step, friction factor and cost function criteria. The classification and clustering of 
newly added feature vectors can be estimated visually. 

However, despite many advantages of the virtual particle method its computational complexity is 
not lower than for the other multidimensional scaling algorithms which minimize the stress 
function (1) and is majored by O(M2) term. It is too large to enable interactive visualization of 
data sets which consists of more than 104 feature vectors using serial mode of computations. 
Therefore, the parallelization of MDS algorithm is the first issue to increase its computational 
efficiency. 

As shown in Listing1, two nested loops FOR1 and FOR2 in forces computation module 
decide about the squared complexity of a single time step. The remaining part, representing 
particle motion, has only linear complexity (loop FOR3) and its influence on computational time 
is negligible for large number of feature vectors. Therefore, in the following sections we are 
dealing with parallelization of the nested loop term representing calculation of forces acting on a 
single particle. 
 
3 Parallel MDS algorithms 
 
In this section we present the parallel algorithms for multidimensional scaling based on particle 
dynamics. We discuss and compare three parallel implementations of MDS depending on the 
multiprocessor type and parallel environment used, namely:  

1. Multi-core CPU processor with OpenMP directives; 
2. GPU board with CUDA Nvidia computational environment; 
3. High Performance Cluster with MPI interface. 

 
3.1  Parallel MDS algorithm for multi-core CPU 
 
There are many well known methods for parallelization of “round robin” molecular dynamics 
(MD) (i.e. every particle interacts with all the others) developed on shared memory multi-core 
processors and vector processors (e.g. [25-27]). However, unlike in MD codes, the particle-
particle interactions depend also on distances array D, which has to be distributed onto 
computational nodes.   

    

a b c 

 
 

Fig.3 a) Distribution of computations onto 4 threads. b) Division of computations onto blocks. c) Splitting 
the distances array onto four blocks in GPU. 
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Listing 2 Pseudocode representing CPU version of the simulation kernel of MDS algorithm 
 
This seems to be unimportant modification is in fact crucial, because of the large size of distances 
matrix (owing to O(M2) memory complexity) what causes dramatic problems connected with 
efficient use of cache memory. To optimize the use of cache memory both for serial and parallel 
codes the Fi array which stores forces (forces (.) in Listing 1,2) is merged with the array of 
particle positions (positions (.) in Listing 1,2). In the buffer memory where data are stored the 
forces are arranged alternately with particle positions. This trick makes data needed for 
calculations be placed very close in operation memory, decreasing the memory access time and 
enabling more efficient use of cache (lesser number of cache misses). In Listings 1 and 2 we use 
two arrays: forces (.) and positions (.) to make them more explanatory. 

To distribute the computations among the threads, the nested loops FOR1-FOR2 from Listing 
1 should be modified. To this end all particle pairs were divided onto the sets of equal size. Each 
set is processed by a single thread. The thread computes partial forces acting on particles from the 
respective set. In Fig.3a we show the diagram demonstrating how the computations are 
distributed among the threads. Each array component from Fig.3a stands for the force fij, distance 
Dij in source and dij in target spaces. Because the array is symmetric, only its lower part is 
processed.  

To minimize the access time to the operational memory, the array from Fig.3a should be 
divided onto square blocks of size b and, as shown in Fig.3b, be looked through on block by 
block basis. The blocks are redistributed among threads in a similar way as particle pairs in Fig.3a. 
Moreover, to make this algorithm efficient, the size of block b should be matched to the type of 
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processor, the number of threads employed in computations and the size of data processed. If b is 
too small, more memory hits are expected. Otherwise, too large b causes cache overflow and 
obstructs the load balancing.  The value of b is selected experimentally. Pseudocode of the 
simulation kernel of MDS method – i.e. the fragment of code representing single time step, is 
shown in Listing 2.  

The optimal block size b is chosen performing tens of iterations (time steps) for sizes of 
blocks being the powers of two from 64 to 2048. The tests presented in the following sections use 
the optimal block size. The algorithm was implemented by using OpenMP directives. 
 
3.2.  Parallel MDS algorithm for GPU 
 
Using GPU instead of CPU is one of the ways for accelerating the computations. In this section 
we present the MDS algorithm developed for CUDA Nvidia environment.  

The GPU is SIMD type of processor architecture. The basic components of GPU responsible 
for computations are multiprocessors (MP). Each multiprocessor executes simultaneously 16 up 
to 32 similar operations on various variables depending on the type of operation and processor. 
From the point of view of a programmer the number of registers and the size of MP cache – the 
memory which speed is comparable to the speed of registers - are the most significant parameters 
of GPU multiprocessor. The most important properties of full GPU board are the number of 
threads and the size of global memory i.e., relatively slow memory which can be used as a buffer 
for data transfer from operational memory of the whole computer system to the MPs caches. The 
compute capabilities of GPU boards – usually represented by two digits separated by a dot - are 
presented in Table 1.  
 

Table 1 The compute capability of modern GPU boards 
 

 
 
The codes which run on GPU boards should minimize the number of operations involved global 
memory due to its relatively long access time. Therefore, the efficient algorithms employing GPU 
use the following steps: 
 
1. Copying the fragment of global memory to the shared memory. 
2. Executing the calculations on data located in GPU registers and shared memory. 
3. Write-back the results to the global memory. 
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The read-write operations to the global memory do not block the MPs. In the moment when a 
warp is blocked by read-write operations, the multiprocessor can execute other warps. It allows 
for overlapping by calculations the delay caused by usage of global memory. The maximum 
number of warps assigned to a single processor depends on both compute capability of GPU 
board (see Table 1) and organization of the running code. 

The program consists of two parts: PC module executed on CPU and GPU module 
representing simulation kernel. The PC module reads data, such as particle positions and 
velocities to its operational memory and is responsible for calculating dissimilarity array D. It 
also takes part in transferring these data to the global memory of GPU board. The whole 
simulation is executed on GPU board. 
  Our algorithm bases on the following assumptions: 
 
1. The whole dissimilarity array D is transferred from operational memory to the GPU global 

memory and resides there to the end of computations. This is because the transfer from 
operational to the global GPU memory is very slow. 

2. Unlike in the CPU case the whole D is used for computations (M2 components instead of 
M(M-1)/2). It allows for considerable simplification of the algorithm by removing conditional 
instructions which are very inefficient on GPU.  

3. Buffering arrays which keep positions and velocities of the particles are divided onto blocks 
containing 32 particles each. If a block is not full, additional artificial particles are generated. 
Consequently, the number of rows in D is increased while the number of columns is kept 
unchanged. This allows the algorithm to be described on the level of warps operation. Each 
warp executes in parallel the instructions on the all 32 particles. 

4. If two particles are too close to each other, their interactions are ignored. It allows for 
elimination of extreme cases and processing diagonal components of D array without the 
need to process additional if instructions. 

The code developed is represented by a single kernel. It is executed once per each time step. 
At the beginning of computations the following data are transferred from operational (CPU) 

to the global (GPU) memory. 
 
1. Dissimilarity array gdistances (D).  
2. Buffer gpositionsA (xn) which contains current particle positions. 
3. Buffer gpositionsB (xn+1) which contains computed (new) particle positions. 
4. Buffer gVelocities  (vn) which contains current particle velocities, replaced subsequently 

by the newly computed. 
 
The compute capability of the simulation kernel located on GPU board is determined by two 
parameters: wB – the number of warps in a single block (warp consists of 32 threads) and wC – the 
number of particles transferred to a buffer in the shared memory during the computations (must 
be a multiple of 32). From these two parameters the number of threads T on a single block and 
the number of blocks B are computed. Pseudocode representing the MDS algorithm version 
intended for calculations on GPU board is presented in Listing 3. It demonstrates a series of 
instructions executed in the scope of one block. The variables which begin with the letter „s” and 
„g” are stored in the shared and global memories, respectively.  

Each thread calculates the force Fi acting on i. To this end the positions of all the 
particles and respective fragment of dissimilarity array should be copied to the shared memory. 
Data are copied and processed in a controlled way to use the shared memory efficiently. Then the 
velocities vi (stored in gVelocities buffer) of all particles are computed and their positions 
(stored in gPositionsB buffer) updated. At the end of the iteration (a time step) the arrays 
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gPositionsB and gPositionsA are swapped to avoid the memory conflicts caused by the 
threads from various blocks accessing the arrays holding particle positions. 

The distribution of computations over blocks is shown in Fig.3c. The computations are 
split onto four blocks each of height equal to 32wB rows. Because the number of particles (feature 
vectors) is not divisible by 32wB, additional rows - virtual particles - were added (the hatched 
region in Fig.3c). So, the last block executes some operations on artificial particles. However, 
they do not influence other particles because the number of columns remains unchanged.  The 
size of global memory - about 3GB on standard GPU boards - imposes an upper limit on the size 
of data. Because the dissimilarity array M×M which should be hold in global memory is 
responsible mainly for the size of data, only around of 104 feature vectors (particles) can be 
processed on a single GPU board.    

 

 
 

Listing 3 Pseudocode representing GPU version of the kernel of MDS algorithm 
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The total memory complexity of the code is: 
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The number of registers rT used by a single thread is another important parameter which influence 
computational efficiency. This parameter is matched during compilation. Both wB and rT 
determine the number of registers used by a single block. The optimal values of rT, wB,C for tests 
presented in this paper are matched on the basis of approximate assessments given in [28] and 
trial runs executing several time steps of simulation. 
 
3.3.  Parallel MDS algorithm for MPI cluster 
 
The MDS algorithm implemented on cluster uses two-level parallelism. The first one is connected 
with internal architecture of cluster nodes. The cluster node can be just a shared memory 
multiprocessor (one or more multi-core CPUs) or it can be additionally empowered with GPU 
boards. In the former, calculations within MPI (Message Passing Interface) process are 
parallelized with the use of OpenMP or POSIX threads (both versions are implemented) while in 
the latter, CUDA environment is used.  

The higher – coarse-grained - parallelization level corresponds to the topology of cluster 
nodes. The dissimilarity matrix and calculations are distributed among nodes with the use of 
adapted UTFBD algorithm ([29]) which is an optimized version of Taylor algorithm [30]. These 
algorithms were originally developed for parallel molecular dynamics simulations and were 
adopted by us to the requirements of our MDS method. Each MPI process corresponds to one 
system process executed on a dedicated cluster node. Following, we present the details of this 
parallel algorithm. 

We define Un,n=[urc]n1,n1 matrix of MPI processes. Only its lower triangle and diagonal are 
used. As it was shown in Fig.4a, the processes are ordered row-wise. For every element urc of 
matrix Un,n for which c≤ r, exactly one process is assigned with MPI rank equal to: 
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This data structure defines the constrained number of MPI processes that may be used during 
computations to n1⋅(n1+1)/2 where n1 is the matrix size. 

The particles positions and velocities of particles represented by the sequence of vectors are 
divided onto n1 subsequences indexed by integers starting from one. To describe relationship 
between vectors' indices and numbers of subsequences, two function named size(g) and first(g) 
are defined: 
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Then, the subsequence of vectors representing particles positions with index g (0 < g < n1) is 
defined as follows: 

( )1)()(2)(1)()( ...,,,,)( −+++= gsizegfirstgfirstgfirstgfirstx gS xxxx        (9) 
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Analogically, for velocities of corresponding particles we obtain: 
 

( )1)()(2)(1)()( ...,,,,)( −+++= gsizegfirstgfirstgfirstgfirstv gS vvvv .     (10) 
 
The sequences Sx and Sv are assigned to respective MPI processes i.e.,  Sx(r) and Sv(r) sequences 
to processes urc lying on main diagonal (r=c), while two sequences of particle positions: Sx(r) and 
Sx(c), are assigned to the rest of processes (r > c). 

As shown in Fig.4b, during simulation every process urc from diagonal (r=c) uses and 
updates all distances (both in “target” and “source” spaces) from the set: 

 
{ })(,: rSxjiji ∈xxxx ,                 (11) 

 
while the rest of processes, urc (r>c), keep track of all distances from the sets: 
 

{ })(),(: cSrS xjxiji ∈∈ xxxx .             (12) 
 
In each time step, current distances between particles from d array are compared with the values 
from the input dissimilarity matrix D. Consequently, total forces acting on each particle are 
computed and particles are moved according to the Newtonian dynamics.  

Because particles' positions are scattered between processes, each of them may compute only 
partial forces acting on their particles. The sequences of partial forces are denoted as SF. They are 
defined analogically as sequences Sx in formula (9): 
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where fh,i is a part of the total force acting on particle i, exerted by particles from Sx(h) sequence.. 
Every sequence SF(g, h) may be computed by the process ugh for g<h or by the process uhg when 
g≥h. At this stage processes do not communicate with each other. To compute sequence of total 
forces SF(g) acting on particles from Sx(g), corresponding elements from SF(g,h) sequences must 
be added. They are gathered by the processes ugg from Un,n matrix (see Figs.4c,d). This procedure 
can be expressed as follows: 
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The computation stages of a single time step are presented in the Table 2.  

To exchange data between processes only two MPI functions are needed: MPI_Bcast and 
MPI_Reduce. Unfortunately, both of them are blocking procedures. This generates a serious 
problem with rapid drop in computational efficiency. During every time step, the processes lying 
out of the diagonal of matrix U have to execute each function twice, i.e.: 

 
• the first time - for synchronization of the first dataset along row; 
• the second time - for synchronization of the second dataset along column.  
 
However, these two operations may be executed in parallel, because they work on separate 
buffers. To bypass the lack of non-blocking versions of these functions in MPI standard, POSIX 
threads were employed. Every process lying out of diagonal uses two threads during data 
synchronization. One thread synchronizes data along a row while another along a column. 
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Table 2. The functions of processes u from matrix Un,n during a single time step 
 

processes from diagonal (r=c) processes lying out of diagonal (r>c) 

Update velocities vectors from Sv(r) 
and positions vectors from Sx(r) 
according to formulas (9,10). 

do nothing 

Broadcast particles positions vectors 
(sequence Sx(r)) along row and 
column (Fig.4a). 

Receive two sequences with positions 
vectors: Sx(r) from process urr and 
Sx(c) from process ucc (Fig.4a) 

Compute SF(r, r) on the ground of 
difference between current particles 
distances and original dissimilarities 
(Fig.4b) 

Compute SF(r, c) and SF(c, r) on the 
ground of difference between current 
particles distances and original 
dissimilarities (Fig.4b) 

Compute SF(r) by gather and addition 
proper sF sequences from processes 
lying in the same  row and column 
(Fig.4c,d) 

Send SF(r, c) to process urr and SF(c, r) 
to process ucc (Fig.4c,d) 

 

  

  

dc 

ba 1 

2 3 

4 5 6 

8 7 9 10 

 
Fig.4 Diagrams demonstrating the distribution of computations onto cluster nodes. 
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4 Tests and results 
 
In all the tests reported below, we compare the average execution times of one time step of 
particle based MDS parallel algorithms which peudocodes are shown in Listings 1-3. The 
averages were calculated for runs executing at list 200 time steps. The tests were carried out 
employing optimized C++ codes with MPI functions, OpenMP directives or CUDA Nvidia 
procedures in respect to computational environment used. All the operations performed on real 
numbers were executed using the same variable type, i.e., float and/or double, which can be set 
up at the beginning of program execution. The efficiency of the sequential code was tested on 
several computer architectures described in Table 3. All the tests were performed using 64-bits 
Linux system. The codes were compiled by using g++ compiler ver.4 with O3 option (optimized 
code). Only on the older “Baribal” cluster (see Table 3) the code was compiled using icpc Intel 
compiler.   
 
4.1 Tested computer systems 
 
In Table 3 we provide a brief description of the computer systems used in our tests. The list 
contains heterogeneous computer systems ranging from older cluster systems (SGI Altix 3700) to 
strong computational clusters (HP SL390) empowered with GPU boards through PCs and 
workstations with single multi-core CPU and GPU boards. 

 
Table 3. The description of computer systems used for performance analysis a) CPU systems and b) GPU 

boards. 
a) 

Processor name Computer 
Number 

of 
processors

Number 
of cores 

per 
processor

Clock 
speed 
[GHz] 

Cache 
size 

[MB] 

Memory
 size 
[GB] 

Intel Xeon X5670     one node of HP SL390 
cluster, (in total) 

2 
(48) 

6 
(288) 2.93 12 70 

(1,700) 

Intel Core2 Duo 
E8400 PC 1 2 3 6 8 

Intel Core i5 
M 430 laptop Samsung R780 1 2 2.27 3 4 

Dual Core AMD 
Opteron 270 workstation 2 2 2 1 16 

Intel Itanium 2 
Madison (IA-64) 

SGI Altix 3700, 
supercomputer 
“Baribal”, ACK  
Cyfronet AGH 

256 1 1.5 6 or 4 512 

b) 

Name of device Compute 
capability 

Number of 
multi- 

processors 

Number of 
CUDA cores 

per 
multiprocessor

Multi-
processors 
clock rate 

[GHz] 

Global 
memory 

size 
[GB] 

Global 
memory 

clock rate 
[GHz] 

GeForce 8500 GT        1.1 2 8 0.92 0.25 0.40 



 14

GeForce 8800 Ultra 1.0 16 8 1.51 0.75 1.15 

GeForce 9500 GT        1.1 4 8 1.40 0.50 0.40 

GeForce 9800 GT        1.1 14 8 1.38 1.00 0.90 

GeForce GT 330M       1.2 6 8 1.27 1.00 0.79 

GeForce GTX 260       1.3 27 8 1.26 1.75 1.00 

GeForce GTX 460       2.1 7 48 1.40 2.00 1.80 

GeForce GTX 480       2.0 15 32 1.40 1.50 1.85 

Tesla M2050                2.0 14 32 1.15 2.62 1.57 
 
3.2 Data test beds  
 
In the tests we used a few data sets of very different character [28,31]. However, we have noticed 
that data topology does not noticeably influence the timings of a single iteration albeit it has 
considerable effect on the quality of final mapping and the number of iterations necessary to 
obtain optimal value of the “stress” function. We are focused here on the efficiency of a single 
iteration (a time step) and on parallel implementation issues rather than on the quality of mapping. 
The former depends on the hardware and software issues while the latter on a proper choice of 
heuristics and its parameters. Therefore, to make the results consistent, we used in the tests only 
one artificially generated dataset consisting of 40-dimensional vectors (i.e., N=dim(ΩΩΩΩ)=40) 
representing 2 classes of the same size: class 1 and class 2. First 1-20 vector coordinates were 
generated randomly from [-3/2, 3/2] interval. For vectors belonging to the class 1 their 21-40 
coordinates are random numbers from [-3/2, ½] interval while those from class 2 were generated 
in [1/2, 2/3] interval. We use several datasets of various sizes: H1, H2, H3 etc. consisting from 
1024 up to 256k (~2.6⋅105) vectors. The final results of H4 data visualization (ΩΩΩΩ→→→→ΣΣΣΣ where 
dim(ΣΣΣΣ)=n=3) using our MDS algorithm is demonstrated in Fig.5. 
 

 

class 1 

class 2 
 

 
Fig.5 The H4 dataset visualized by MDS employing virtual particle method for minimization of stress 

function (1) for k=1/2, m=2, wij=1. 
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We assume additionally that two dissimilarity matrices, D and d, are Euclidean. The minimized 
stress function is represented byu the formula (1) with k=1/2, m=2, wij=1. The computational 
efficiency measured for average execution time of one time step is very similar for other choices 
of stress function type. 
 
4.3  Results of tests – single thread case 
 
In Figs.6a,b we display the average execution times of one time step of MDS algorithm for tested 
CPU boards and H1k-H30k testing datasets. The plots show that for the fastest three processors 
the computational times obtained for float arithmetic (Fig.6a) are reverse proportional to the CPU 
frequency (Table 3). In this case the Intel Xeon X5670 dedicated for number crunching is slightly 
slower then two years older one i.e., the popular Intel Core2Duo. Its advantage over other CPUs 
is evident for double arithmetic (Fig.6b) concerning both the computational speed and memory 
access time. 
 

 

a b 

 
 
Fig.6 The averaged timings of the sequential version of MDS algorithm for a single time step for a) float 
and b) double arithmetic. 
 
4.4  Results of tests – multi-core CPU 
 
The pseudocode of the algorithm developed for multithread implementation of MDS is presented 
in Listing 2. The C++ code was tested on all the platforms from Table 3a. The compiler was the 
same as for the sequential code. For distribution of computations onto threads we used the 
OpenMP technology. The maximal number of threads does not exceed the total accessible 
number of cores for tested configurations. The only exception was Intel Core i5, which due to 
Hyper-Threading technology allows for concurrent execution of two treads on a single core.  The 
calculations on Itanium cluster (“Baribal”) was performed by using 20 processors while the tests 
on Xeon 5670 processor was conveyed on one node of HP SL390 cluster, i.e., 12 threads. As 
shown in Fig.7, the concept of reading the large distances array using block_by_block method is 
more efficient than previously used row_by_row one. It allows for better optimization of the 
cache memory for larger data files. Therefore, just block_by_block method was used in our tests 
presented below. 

In Figs.8a,b we display the average execution times of one time step of the multithread 
MDS code for tested platforms and H1k-H30k testing datasets. The plots from Fig.8 demonstrate 
that one node of HP SL390 cluster consisting of two Intel Xeon X5670 CPUs (12 cores) remains 
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unbeatable. It is 2-3 times faster than 20 processors of SGI Altix 3700 cluster. As before, Xeon 
X5670 shows its advantage over the other platforms in double arithmetic.   
 

 
 
Fig.7 The average times of one MDS timestep for two methods of dissimilarity array reading. The red plot 
corresponds to the row_by_row method while the black one to block_by_block algorithm (see Fig.3b). 
 

  

a b 

 
 
Fig.8 The averaged timings of the multithread version of MDS algorithm for a single timestep for a) float 
and b) double arithmetic. 
 
The high efficiency of parallel implementation of our algorithm from Listing 2 is confirmed by 
nearly liner speedups collected in Table 4. They were obtained for H30k data file and float 
arithmetic. It means that the efficiency achieved is higher than 90%. The worst efficiency was 
obtained for four threads executed on two cores of Intel Core i5. The Hyper-Threading 
technology was not able to substitute two additional cores, so the speedup is relatively low. 
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Table 4. Speedups obtained for various computer architectures and number of threads 
  

Threads count 
CPU type 

2 4 12 20 
Intel Itanium 2 („Baribal”) 1.95 3.99 11.74 18.56 
Dual Core AMD Opteron 270 2.00 3.97 ---- ---- 
Intel Core i5 M 430 2.00 2.19 ---- ---- 

Intel Xeon X5670 2.00 3.92 11.18 ---- 
Intel Core2 Duo E8400 2.00 ---- ---- ---- 

 
 
4.5  Results of tests – GPU 
 
All of GPU boards from Table 3b were tested assuming simplified floating-point arithmetic. 
Additionally, the GPU boards with compute capability equal to 2.0 or greater were tested for 
IEEE-754 standard of arithmetic (ieee version). In Fig.9 we present the averaged timings of a 
single iteration of our MDS algorithm from Listing 3 for a set of GPU boards. The timings 
obtained on two Intel Xeon X5670 CPUs by multithread version of MDS algorithm described in 
the previous section are shown for comparison.   

In Table 5 we collected the speedups for tested GPU boards both for fast and ieee arithmetic. 
They were calculated versus both single thread code version and full 12-threads node of HP 
SL390 cluster (2 x Intel Xeon 5670). The measurements were performed for the largest testing 
datasets which fit to the GPU global memory, i.e., H13k for older GPUs (Fig.9a) and H18k for 
newer ones (Fig.9b). 
 

a b 

 
Fig.9 Timings obtained for a) older GeForce boards and b) GTX 460 and Fermi boards versus two Intel 
Xeon X5670 CPUs for two types of arithmetic (fast and ieee). 
 
Apart from the oldest GPU boards the rest ones were faster than the cluster node. The timings 
obtained by the optimal OpenMP code on the cluster node were comparable to the CUDA code 
executed on the weak GeForce GT 330M GPU board from a medium class laptop. The PCs with 
stronger graphic boards such as GeForce GTX 260 or GeForce GTX 460 are five times faster 
while Tesla M2050 and GeForce GTX 480 beats 7-8 times the cluster node performance for fast 
mode arithmetic (Table 5).  
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Table 5 Speedups obtained for various NVIDIA GPU boards measured against single node with two Intel 
Xeon X5670 processors for ieee arithmetic. 

 

FAST floating points operations IEEE floating points operations 
GPU type vs. 2 processors

(12 threads) 
vs. single core 

(1 thread) 
vs. 2 processors

(12 threads) 
vs. single core 

(1 thread) 
GeForce 8500 GT 0.3 2.8 ---- ---- 
GeForce 8800 Ultra 2.9 32.8 ---- ---- 

GeForce 9500 GT 0.8 8.4 ---- ---- 
GeForce 9800 GT 2.5 28.3 ---- ---- 
GeForce GT 330M     1.2 13.4 ---- ---- 
GeForce GTX 260 5.0 57.1 ---- ---- 

GeForce GTX 460     5.1 58.0 2.1 24.3 
GeForce GTX 480     8.3 94.6 3.9 43.7 
Tesla M2050 7.1 80.1 3.6 40.6 
  
The advantage of GPU processors shrinks if the full floating-point arithmetic according to IEEE-
754 standard is necessary. As shown in Fig.9 and Table5, only the GPUs with compute capability 
greater than 2 meet this requirement. The performance drops 2 times in that case. However, as 
shown in Table 6, increasing requirements concerning computational accuracy additionally 
diminishes this difference. For double arithmetic CUDA codes when run on Fermi and TeslaM 
2050 are almost 2 and, respectively, 3 times faster than corresponding OpenMP code executed on 
two Intel Xeon 5076 processors. Albeit the advantage over cluster node is still evident, three 
additional factors which additionally shrink GPU advantage over CPU should be taken into 
account: 
 
1. The coding time using CUDA is a few times slower and much more sophisticated than 

exploiting OpenMP standard. 
2. The Fermi and Tesla boards are expensive and are not scalable. 
3. The global memory of GPU boards is at least two times smaller than operation memory of 

tested CPU board. 
 

Table 6 Speedup measured against single node with two Intel Xeon X5670 processors for double 
arithmetic. 

 
GPU type vs. 2 processors 

(12 threads) 
vs. single core  

(1 thread) 

GeForce GTX 260 0.5 5.8 
GeForce GTX 460     0.8 9.4 
GeForce GTX 480     1.8 20.1 

Tesla M2050 2.8 31.3 
 
In respect to MDS and interactive visualization of large datasets, the third aspect is especially 
painful. The idea of keeping only a part of distances array in GPU global memory is extremely 
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inefficient because of small throughput between operational and global memories (16 GB/s for 
PCI-Express x16.2x). 
 
4.6  Results of tests – MPI cluster 
 
As was mention in the introduction, processing a very large dataset is not only computationally 
but also memory bounded by O(M2) factor. For large M the memory consumption is beyond the 
ability of a single processor board. The memory shortage problem becomes more obvious if the 
running OS is 32-bit which can handle at most 4GB virtual memory per process. Therefore, we 
can utilize distributed resources of a MPI computer cluster to handle very large data. For large 
data processing we have developed a parallel MPI version of the MDS which is described in 
Section 3.3.  

For testing purposes we used two MDS code versions exploiting two-level parallelism on a 
small MPI cluster (HP SL390). As the first level we employed the MDS algorithm written for 
CPU nodes with OpenMP directives and the GPU version of MDS with CUDA programming 
interface. The second level parallelism exploits cluster node topology and is realized by the MPI 
based algorithm described in Section 3.3. In the tests we used MPICH2 [32] environment which 
is consistent with MPI2 standard. It allows the code to be executed both on the computer cluster 
and a single multiprocessor.   

The CPU and GPU versions were tested using H40k and H24 datasets, respectively. Different 
size of testing datasets is due to the limitations imposed by the size of GPU global memory. The 
computations were performed using float arithmetic. The speedups for these two parallel versions 
of MDS were compared to the timings obtained for multithread MDS developed for multi-core 
CPU on one cluster node (Listing 2) and for one Tesla M2050, respectively. The MPI code was 
developed in accordance with the algorithm described in section 3.3. As shown in Fig.10, the 
efficiency of a single node is around 40-50% for both versions. In comparison to CPU version the 
GPU one gives lower speedup. This is due to smaller size of data processed and faster execution 
time on a single GPU board. In that case the serial component in the Amdahl law, i.e., the 
communication between the GPU boards, is greater than for slower CPU version. 
 

a b 

 
Fig.10 The speedups for HP SL390 MPI cluster employing two level parallelism: MPI interface and a) 
OpenMP on CPU nodes (2x XenonX5670), b) CUDA on GPU nodes (Tesla M2050). 
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5 Related work 
 
Because data mining of large data sets became one of the hottest topics in computer science, 
multidimensional scaling has recently attracted much attention as a robust visualization tool for 
data exploration [1,2[. Knowing MDS limitations such as quadratic memory and computational 
complexity, plenty of approaches were developed concerning both methodological and 
implementation issues. The most recent reviews can be found in [1,2]. Among many approaches 
to multidimensional scaling the classical concept dominates [9,12,13,14]. It employs dissimilarity 
matrix between objects as a most reliable representation of the multidimensional data topology. 
The major factors which differentiate the MDS methods based on dissimilarity matrix are as 
follows: 
 

1. Definition of dissimilarity and the metrics in the context of non-metric and metric 
spaces, respectively [8-13]. 

2. Usage of the partial dissimilarity matrix or its approximation (such as in [19, 20, 33, 34, 
35]). 

3. The type of minimized cost function (“stress function”) [9,11,1213,14]. 
4. The choice of minimization procedure (e.g in [1,2,4,5,17,36]). 
5. The implementation issues (e.g., [1,2,37]). 

 
Probably, one of the first papers which address the problem of implementation of MDS method 
on GPU was written by Reina and Ertl, 2005 [38]. The paper presents GPU version of FastMap 
[39] - a quite simple and very fast visualization method. Its GPU version was implemented with 
the use of OpenGL library. Execution times obtained on GeForce 6800 GT were about 40 times 
lower than those obtained by CPU implementation run on a single Pentium 4 2.4 GHz processor.  

Another GPU implementation of multidimensional scaling method can be found in [40]. 
This paper describes an implementation of HitMDS algorithm in CUDA environment.   
The HitMDS algorithm bases on maximization of Pearson correlation between original and target 
distance matrices and was presented in earlier papers [41] and [42]. The Authors reported that on 
NVidia TESLA S870 GPU rack they gained speedup within interval 50-60 measured against 
Matlab implementation run in multi-thread mode on a 16 core server equipped with 3 GHz AMD 
Opteron CPUs. The NVidia TESLA S870 GPU rack consists of four Tesla C870 processors. 
Single Tesla C870 processor is comparable to GeForce 8800 Ultra graphic card.   

According to the review paper [2] the most efficient implementation of MDS algorithm 
allowing for visualization of 2x105+ feature vectors is the GPU implementation of GLIMMER 
algorithm described in [35]. It integrates two other approaches: Chalmers's algorithm ([34]) and 
Multigrid MDS ([40]). GLIMMER was designed in a way allowing for its direct and efficient 
implementation in GPU environment. However, as shown in [28], the final results of GLIMMER 
mapping are far from the global minimum of the cost function (1). It was shown in [28] that the 
MDS method employing particle dynamics and incomplete distances matrix can achieve similar 
GPU efficiency as GLIMMER with considerably smaller error (1).  

Anyway, in this paper we concentrate on the implementation of MDS algorithm which uses 
full dissimilarity matrix. Unlike approximate algorithms, such as GLIMMER, it ensures that the 
mapped structure is unambiguous. By using full dissimilarity matrix we avoid systematic errors 
caused by overridden number of degrees of freedom in approximate algorithms.  

In [5,6,31,33] we have presented a few parallel implementations of MDS based on particle 
dynamics. Our algorithms were inspired by well known molecular dynamics parallel codes. In 
[31] we reported satisfactory linear speedup with 40%-80% efficiency using 36 nodes (144 
treads) and 6x104 feature vectors. The most recent parallel MPI implementation of MDS with full 
dissimilarity matrix – SMACOF - is presented in [37]. The SMACOF (Scaling by MAjorizing a 
COmplicated Function) algorithm bases on function majorizing concept [36]. In general, the 
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minimum obtained by using this type of algorithm is local and is not as good as those obtained by 
heuristics (e.g. [5,6,28]). However, unlike for heuristics, it can be achieved much faster. In [37] 
the Authors report a very good performance of their parallel MDS algorithm on the clusters of 
AMD Opteron 8356 (2.3GHz) and Intel Xeon E7450 (2.4 GHz) consisting of 256 and 768 nodes, 
respectively. The largest data set visualized consists of 105 feature vectors.  

Though the MPI implementations allow for visualization of the datasets of the largest sizes 
due to the scalable memory, the simulation times are still unsatisfactory to enable interactive 
visualization of 104 feature vectors. Meanwhile, as shown in Fig.9b, one iteration of simulation of 
dynamics of 19,000 particles (feature vectors) using our MDS virtual particle algorithm running 
on Fermi GPU board and using fast arithmetic requires about 20 milliseconds.  For a typical 
number of time steps needed to obtain a stable minimum i.e., n=1000-5000, we obtain the total 
computational time equal to 2-10 seconds. This result is more than satisfactory for interactive 
visualization and control having in mind that the system can be additionally interactively 
controlled during particle system evolution. 
 
6 Discussion and conclusions 
 
Mapping of original matrix D representing dissimilarities between data objects onto feature 
vectors from 3D-2D Euclidean space allows for interactive visualization of non-metric, non-
Euclidean feature spaces. The visualization of the process of minimization of the error function, 
possibility of deleting outliers, changing on the fly the parameters and error function are the basic 
procedures which can be used for interactive exploration of the feature space and search for data 
dependences. Such the interactivity is possible by using robust heuristics which is based on 
dynamics of virtual particles corresponding to respective data objects [5,6,20,28]. Because the 
particle system dynamics consisting of dissipative particles is a metaphor of the stress function 
minimization, the process of particle evolution is meaningful on its own. Tracing particles allows 
for better matching the parameters of simulation, helps to find the best minimum of error function 
which corresponds to the minimum of potential energy of the whole particle system.  

However, due to quadratic complexity of the MDS problem, to enable visualization of 
datasets consisting of 104+ feature vectors two approaches are possible. The first one consists in 
developing efficient parallel algorithms exploiting modern parallel programming paradigms, 
interfaces and processor architectures. This is just what we do in this paper. The second way is to 
develop approximate algorithms of lower computational complexity such as those using sparser 
dissimilarity matrices [19, 20, 33, 34, 35] (i.e., disabling or approximating most of distances in D). 
Although such the approach allows for visualization of larger datasets [35], it can be done at the 
expense of more difficult control of the total error and longer time of coding. The sparser 
distances matrix needs to be fit in more sophisticated data structures and the conditions of 
efficient parallelization impose additional constrains on these structures (e.g. requirement of data 
locality). 

To compare the efficiency of the developed parallel MDS algorithms in different 
programming environments, we have collected in Fig.11 and Fig.12 the most important timings 
obtained for the same datasets. The timings for float arithmetic shown in from Fig.11 were 
obtained for H18k dataset. The identical tests for double arithmetic presented in Fig.12 were 
performed for H12k dataset. The size of datasets was limited by the size of global memory of 
GeForce GTX 480 (Fermi) GPU board. In the Figs.11-12, we present the two best timings 
obtained by multithread OpenMP version of the algorithm and three best timings obtained on the 
GPU boards. The timings for GPU boards were made for ieee arithmetic. We have added also the 
timings obtained on MPI cluster with both CPU and GPU nodes. Unfortunately, due to the small 
size of datasets and lesser number of nodes the speedups obtained were considerably worse than 
those described in section 4.6. 
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Fig.11 Comparison of average times of a single MDS iteration on chosen CPUs, GPUs, nodes and MPI 
clusters made for float arithmetic. 
 
As shown in Fig.11, the advantage of GPU over CPU systems is evident for float arithmetic. Just 
by employing small 6 nodes cluster (12 Intel Xeon X5670 processors) allows for achieving 
timings a little bit better than for a single GeForce 460 GTX GPU board. From results obtained in 
section 4.6 we expect that for larger datasets the MPI cluster will be more efficient. So, the 
computational power of 6 two-processor server should be comparable rather to Fermi or Tesla 
boards. It means that a workstation with 4 strong GPU boards can have similar computational 
power as a professional sever equipped with several two-processor nodes.  

As demonstrated in Fig.12, if a double precision arithmetic is required the advantage of GPU 
boards becomes questionable. Only the strongest (and the most expensive) GPU boards, such as 
Fermi and Tesla, are about 2 times faster than two-processor cluster node. As shown in Figs.11-
12, the limited size of global memory of GPU boards can be partially compensated by using more 
GPU nodes. However, comparing the tendency of speedups from Fig.10 we expect that the gap 
between CPU and GPU performance may shrink additionally by employing tens of CPU nodes of 
MPI-cluster.  

Such the bottlenecks like double precision arithmetic, relatively small global memory of GPU 
boards, algorithmic constrains, the difficulty in CUDA or OpenCL programming and limited 
portability of CUDA codes, are still serious disadvantages of more broad exploitation of 
computational capabilities of GPU boards. On the other hand for the problems like 
multidimensional scaling and interactive visualization of large datasets, where fast arithmetic 
mode is sufficient for obtaining satisfactory results, the advantage of GPU boards and clusters 
over CPU equivalents is overwhelming (see Fig.9b). The Fermi GPU board is then about 10 times 
faster than two-processor, 12-thread Intel Xeon X5670 board.  

To sum up, the implementation of multidimensional scaling employing particle dynamics in 
GPU computational environment allows to visualize interactively datasets consisting of more 
than 104 objects (feature vectors) on PCs equipped with GPU boards with compute capability 
around 2 (Tables 1,3b). 
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Fig.12 Comparison of average times of a single MDS iteration on chosen CPUs, GPUs, nodes and MPI 
clusters made for double arithmetic. 
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