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Abstract

In this thesis, we present results for research conducted by the author regarding the regression
method, called δ support vector regression (δ-SVR), the method of incorporating knowledge
about margin per example, called ϕ support vector classification (ϕ-SVC), implementation of
support vector machines (SVM) and application of SVM to executing stock orders. In this thesis,
we propose a method, called δ-SVR which replaces a regression problem with binary classification
problems which are solved by SVM. We analyze statistical equivalence of a regression problem
with a binary classification problem. We show potential possibility to improve generalization
error bounds based on Vapnik-Chervonenkis (VC) dimension, compared to SVM. We conducted
experiments comparing δ-SVR with ε-insensitive support vector regression (ε-SVR) on synthetic
and real world data sets. The results indicate that δ-SVR achieves comparable generalization
error, statistically significant fewer number of support vectors, and smaller generalization error
over different values of ε and δ. The δ-SVR method is faster for linear kernels while using
sequential minimal optimization (SMO) solver, for nonlinear kernels speed results depend on the
data set. In this thesis, we propose a concept of margin knowledge per example and a method
called ϕ-SVC for incorporating this knowledge for classification and regression problems. We
use ϕ-SVC for lowering generalization error for reduced models. In consequence, we get models
with the decreased number of support vectors, with smaller generalization error compared to
models without the margin knowledge. The method was tested for SVM classifier, ε-SVR and δ-
SVR. Experiments on real world data sets show smaller generalization error for reduced models
with margin knowledge. In this thesis, we propose two implementation improvements, the
first one for speed of training of SVM, the second one for simplifying implementation of SVM
solver. The first improvement, called heuristic of alternatives (HoA), regards a new heuristic
for choosing parameters to an active set. It checks not only fulfillment of Karush-Kuhn-Tucker
(KKT) conditions, but also growth of an objective function. Tests on real world data sets show,
that HoA leads to decreased time of training of SVM, compared to the standard heuristic. The
second improvement, called Sequential Multidimensional Subsolver (SMS), regards a new way
of solving subproblems with more than two parameters, instead of using complicated quadratic
programming solvers, we use heuristic approach solving subproblems with two parameters. We
achieve simpler implementation with similar speed performance. In this thesis, we propose an
application of support vector regression (SVR) for executing orders on stock markets. We use
SVR for predicting a function of volume participation. We propose improvement of predicting
participation function by incorporating additional constraints to SVM optimization problem
using modified kernels and ϕ-SVC. We show that quality of the prediction has influence on
stability of the method which achieves theoretically the price of execution called volume-weighted
average price (VWAP). Moreover, we show how we can include results from predictive models
for stock prices, achieving the price of execution better than VWAP. We compared ε-SVR and δ-
SVR with simple predictors such as the average price of execution from previous days. The tests
were performed on data for stocks from NASDAQ-100 index. For both methods we achieved
smaller variance of execution costs. Moreover, we decreased costs of order execution by using
prediction of stock prices.
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Streszczenie

W tej pracy przedstawiamy wyniki badań przeprowadzonych przez autora dotyczące metody re-
gresji, zwanej δ-SVR, metody włączania wiedzy o marginesie per przykład, zwanej ϕ-SVC, imple-
mentacji SVM oraz zastosowania SVM do składania zleceń giełdowych. Poniżej zamieszczamy
streszczenie badań. W tej pracy zamieszczamy opis niedawno zaproponowanej przez autora
nowoczesnej metody regresji, zwanej δ-SVR. W tym raporcie, proponujemy metodę, zwaną
δ-SVR, która polega na zamianie problemu regresji w problemy binarnej klasyfikacji, które
są rozwiązywane za pomocą SVM. Analizujemy statystyczną równoważność problemu regresji
z problemem binarnej klasyfikacji. Pokazujemy potencjalną możliwość ulepszenia ograniczeń
błędu generalizacji opartych na wymiarze VC, w porównaniu do SVM. Wykonaliśmy ekspery-
menty porównujące δ-SVR z ε-SVR na rzeczywistych zbiorach danych. Rezultaty wskazują,
ze δ-SVR osiąga podobny błąd generalizacji, statystycznie istotnie mniejszą liczbę wektorów
wspierających oraz mniejszy błąd generalizacji dla różnych wartości ε i δ. Metoda δ-SVR jest
szybsza dla liniowych jąder używając metody SMO, dla nieliniowych jąder rezultaty szybkości
zależą od zbioru danych. W tej pracy zamieszczamy opis niedawno zaproponowanej przez au-
tora koncepcji wiedzy marginesowej per przykład włączonej do SVM dla problemów klasyfikacji i
regresji. W tym raporcie proponujemy koncepcję wiedzy marginesowej per przykład oraz metodę
zwaną ϕ-SVC do włączania tej wiedzy do problemów klasyfikacji i regresji. Używamy ϕ-SVC
do zmniejszenia błędu generalizacji dla modeli zredukowanych. W konsekwencji, otrzymujemy
modele o mniejszej liczbie wektorów wspierających, z mniejszym błędem generalizacji w stosunku
do modeli nie stosujących wiedzy marginesowej. Metoda została przetestowana dla klasyfika-
tora SVM, oraz dla metod regresji ε-SVR oraz δ-SVR. Eksperymenty na danych rzeczywistych
pokazują mniejszy błąd generalizacji dla modeli zredukowanych z wiedzą marginesową. W tej
pracy zamieszczamy opis niedawno zaproponowanych dwóch usprawnień, pierwsze w szybkości
trenowania SVM, drugie w uproszczeniu implementacji SVM. W tym raporcie proponujemy dwa
usprawnienia w implementacji SVM, pierwsze w szybkości trenowania SVM, drugie w uproszcze-
niu implementacji SVM. Pierwsze usprawnienie, zwane HoA, dotyczy nowej heurystyki wyboru
parametrów do zbioru aktywnego. Bierze ona pod uwagę nie tylko spełnienie warunków KKT,
ale rownież zmianę wartości funkcji celu. Testy na rzeczywistych zbiorach danych pokazują, ze
HoA prowadzi do zmniejszenia czasu trenowania SVM, porównując do heurystki bazowej. Drugie
usprawnienie, zwane SMS, dotyczy nowego sposobu rozwiązywania podproblemów o więcej niż
dwóch parametrach, zamiast stosowania skomplikowanych metod rozwiązujących problemy z za-
kresu programowania kwadratowego, używamy do tego celu podejście heurystyczne rozwiązujące
podproblemy dwuparametrowe. Otrzymujemy prostszą implementację, z podobnymi wynikami
szybkościowymi. W tej pracy zamieszczamy opis zastosowania SVR do wykonywania zle-
ceń na rynkach akcyjnych. W tym raporcie proponujemy zastosowanie SVR do wykonywania
zleceń na rynkach akcyjnych. Używamy SVR do predykcji funkcji partycypacji w wolumenie.
Proponujemy ulepszenie przewidywania funkcji partycypacji za pomocą włączenia dodatkowych
warunków do SVM używając w tym celu zmodyfikowanych jąder oraz metody ϕ-SVC. Pokazu-
jemy, że jakość przewidywania wpływa na stabilność metody osiągającej teoretycznie cenę wyko-
nania VWAP. Ponadto pokazujemy jak za pomocą ϕ-SVC możemy uwzględnić wyniki z modelu
przewidującego ceny akcji osiągając cenę wykonania lepszą niz VWAP. Porównaliśmy ε-SVR i
δ-SVR z prostymi predyktorami takimi jak średnia cena wykonania z poprzednich dni. Testy
zostaly przeprowadzone na danych dla spółek z indeksu NASDAQ-100. Dla obu metod otrzymal-
iśmy mniejszą wariancję kosztów egzekucji zleceń. Ponadto, zmniejszyliśmy koszty wykonania
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zleceń wykorzystując dodatkowo predykcję cen giełdowych.
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Chapter I

Introduction

In recent years, SVM have become popular due to excellent both theoretical and practical re-
sults [44, 45]. They are successfully used for solving classification, regression and many others
machine learning problems. The SVM were widely used in various domains, such as: text clas-
sification [13, 40], biotechnology [10, 21], economy [53], chemistry [4, 21], physics [38] and many
others. They are popular learning methods due to mainly good generalization and fast training.
Moreover, due to: solid basis in statistical learning theory, returning sparse, nonlinear solutions,
resistance to outliers, geometric interpretation, formulation as convex quadratic optimization
problems.

Two most popular problems in machine learning are classification and regression. Regression
methods can be easily used for classification problems. This implies possibility to use power of
regression methods for classification problems. Is it possible to use classification methods for
regression problems? We will try to answer this question in this thesis.

The second main topic of this thesis is incorporating prior knowledge to SVM. A survey on
research in this topic is in [19, 20]. Prior knowledge can lead to decrease of generalization error.
It was incorporated to SVM for many real world problems, such as image retrieval [46], DNA
promoter recognition [6], breast cancer prognosis [6].

I.1 Overview

The SVM are machine learning methods used mainly for solving classification and regression
problems. They were developed by Vapnik [44, 45] in 1990s. They become popular up to now due
to excellent both theoretical and practical results. Performance of machine learning methods is
evaluated mainly based on the following criteria: generalization, speed, sparsity of the solution,
and ability to incorporate prior knowledge.

Exploiting the relation between classification and regression is important for improving per-
formance of existing methods. Moreover, the relation between classification and regression is an
important element of machine learning theory. Vapnik in [44] derived generalization bounds for
regression problems by using the concept of replacing a regression function with a set of indi-
cator functions. Based on this idea, the methods which solve regression problems as multi-class
classification were developed, e.g. [16], Fig. I.1(c), Fig. I.2(c). Another concept of transforming
regression problems into classification were proposed in [24] and independently by the author
in [31, 33]. The idea is to duplicate examples and move the original examples up, and the
duplicated down, Fig. I.1(b), Fig. I.2(b). Based on this idea, we developed a novel regression
method, called δ-SVR which possesses all advantages of SVM, and for some aspects it is better.
Additionally, one of the practical advantages of δ-SVR is the ability to use it with any classifier
based on kernel functions. This implicates broad possibilities of immediate application of any
modifications and improvements of classification methods, directly for regression problems.

One of the possibilities to improve generalization performance is to incorporate additional
knowledge to the problem, sometimes called prior knowledge. Various types of prior knowledge
have been already incorporated to SVM. In [19], authors distinguish two types of prior knowl-
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Figure I.1: Comparison of transformations from regression to classification, 2d. In the figures,
there are solutions (solid lines), original functions from which the points were generated (dotted
lines). In the left figure, there are a solution of ε-SVR and regression data points, in the center
figure, there are a solution of δ-SVR and classification data points after transformation, in the
right figure, there are a solution of regression by multiclass classification and classification data
points after transformation
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Introduction I.1 Overview

Figure I.2: Comparison of transformations from regression to classification 3d. In the figures,
there are solutions (solid lines), original functions from which the points were generated (dotted
lines). In the left figure, there are a solution of ε-SVR and regression data points, in the center
figure, there are a solution of δ-SVR and classification data points after transformation, in the
right figure, there are a solution of regression by multiclass classification and classification data
points after transformation
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Figure I.3: Comparison of solutions: without and with margin knowledge, 2d. In the figures,
there are example points, support vectors (triangles and circles), solutions (solid lines), original
functions from which the points were generated (dotted lines). In the right figure, there is margin
knowledge (circles filled with grid pattern)

edge: knowledge about class invariance, and knowledge about the data. The first type includes
e.g. knowledge about classification in regions of the input space [6, 5, 26], knowledge about
class invariance during transformations of the input. The second type includes e.g. knowledge
about unlabeled examples, imbalance of classes, quality of the data. There exists different ways
of incorporating prior knowledge to SVM, depended on the type of prior knowledge. We can
distinguish three basic ways:

1. modification of input data such as a set of features, values of input parameters,

2. modification of the SVM method,

3. modification of output.

The second method leads to modification of the SVM optimization problem, particularly modi-
fication of the cost function, changing feasible region or modification of the kernel function.

In this thesis, we analyze recently proposed by the author margin knowledge per example
[30, 32, 34]. It is closely related to formulation of SVM optimization problem. This knowl-
edge can be interpreted in simplification as regions in the form of hypersphere’s neighbor-
hoods of examples with variable radii dependent on the margin width, mapped to some class,
Fig. I.3, Fig. I.4. Regions that have been already incorporated to SVM are polyhedral regions
[6, 5, 18, 48], ellipsoidal regions including spheroidal regions [37] and nonlinear regions [26]. Mar-
gin knowledge is incorporated to SVM by using generalization of standard SVM optimization
problem. The similar idea was used for defining γ-shattering in statistical learning theory. We
show that ε-SVR can be treated as a classification problem with margin knowledge, [34]. The
main application of margin knowledge proposed in this thesis is to decrease the complication
of solutions, what implicates the decreased number of support vectors. Simpler solution means
simpler interpretation of the problem, and decreased time of testing new examples. The second
important application of margin knowledge proposed in this thesis, is possibility to formulate
other significant types of prior knowledge in this form. We show that knowledge in the form of
sum of function values for some data can be effectively incorporated to the SVM problem by an
additional constraint, and finally as margin knowledge.

It is important to incorporate knowledge in a soft way, so we can handle imperfect prior
knowledge [28]. The incorporation of margin knowledge as additional parameters to the inequal-
ity constraints of SVM optimization problem makes possible to return solutions with a trade-off
between performance of classifying data and fulfilling margin knowledge constraints.

In recent years, algorithmic trading becomes popular due to the progress in computer indus-
try. Trades are automatically generated by the trading system and sent to order management
system (OMS) which routes the orders to exchanges. One of the task of OMS is to efficiently
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Figure I.4: Comparison of solutions: without and with margin knowledge, 3d. In the figures,
there are example points, support vectors (triangles and circles), solutions (solid lines), original
functions from which the points were generated (dotted lines). In the right figure, there is margin
knowledge (circles filled with grid pattern)

divide the order into smaller parts and sent them during some time period. One of the method
of assessing performance of order execution is to compare the price of execution with the other
market participants. For this purpose we use the measure called VWAP. Recently, a simple
theoretical model which achieves the ratio of VWAP equals to 1 has been proposed, [2]. In prac-
tice, achieving such results depends on quality of prediction of volume participation function.
This prediction leads to a regression problem with additional constraints on the solution. For
models which can achieve even better ratio, prediction of prices is required, Fig. I.5. Recently,
we proposed using SVM with margin knowledge for the system predicting volume participation
and additionally allowing to incorporate price prediction, [35].

External Price Predictor Historical Volume Participation

Strategy for Executing Orders

Margin Knowledge Sample Data

Figure I.5: Data model for strategy of executing orders on exchanges. Strategy of executing
orders uses predicted prices in the form of margin knowledge and historical volume participation
in the form of examples

The hypotheses of the thesis are

1. The proposed regression method δ-SVR leads to the decreased number of support vectors
and improved flexibility of SVM.

5
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2. Margin knowledge per example leads to decreased generalization error while creating re-
duced models for classification and regression problems.

3. Proposed heuristic of alternatives HoA leads to increased speed of heuristic part of SMO
algorithm.

4. Proposed sequential multidimensional subproblem solver SMS is a replacement for general
libraries for quadratic programming for SVM algorithm.

5. SVM with prior knowledge leads to decreased generalization error for predicting function
of volume participation in methods optimizing cost of executing orders on exchanges.

Roadmap. The detail description of the mentioned methods is in separate chapters. In the
first chapter, we introduce shortly support vector classification (SVC), SVR, and prior knowledge
incorporation to SVM. In the second chapter, we present δ-SVR. In the third chapter, we present
ϕ-SVC. In the fourth chapter, we present improvements for implementation of SVM. In the fifth
chapter, we present application of SVM to executing orders on exchanges.

I.2 SVC Optimization Problems
For a classification problem, we consider a set of n training vectors ~xi for i ∈ {1, . . . , n}, where
~xi =

(
x1
i , . . . , x

m
i

)
. The i-th training vector is mapped to yic ∈ {−1, 1}. The m is a dimension of

the problem.
The SVC optimization problem for hard margin case with ‖·‖1 norm Fig. I.6(a) is

OP 1.
min
~wc,bc

f ( ~wc, bc) = ‖ ~wc‖2 (I.1)

subject to
yich (~xi) ≥ 1 (I.2)

for i ∈ {1, . . . , n}, where
h (~xi) = ~wc · ~xi + bc . (I.3)

The SVC soft margin case optimization problem with ‖·‖1 norm Fig. I.6(b) is

OP 2.
min
~wc,bc, ~ξc

f
(
~wc, bc, ~ξc

)
= 1

2 ‖ ~wc‖2 + Cc

n∑
i=1

ξic (I.4)

subject to
yich (~xi) ≥ 1− ξic (I.5)

~ξc ≥ 0 (I.6)

for i ∈ {1, . . . , n}, where
h (~xi) = ~wc · ~xi + bc . (I.7)

The h∗ (~x) = ~w∗c · ~x+ b∗c = 0 is a decision curve of the classification problem.

I.2.1 SVC Dual Optimization Problem

The OP 2 optimization problem after transformation to an equivalent dual optimization problem
becomes

OP 3.
max
~α

f (~α) = 1 · ~α− 1
2
~αTQ~α (I.8)

subject to
~α · ~y = 0 (I.9)

6



Introduction I.2 SVC Optimization Problems

-4
-2
0
2
4
6

-4 -2 0 2 4 6
-4
-2
0
2
4
6

-4 -2 0 2 4 6
-4
-2
0
2
4
6

-4 -2 0 2 4 6
-4
-2
0
2
4
6

-4 -2 0 2 4 6
-4
-2
0
2
4
6

-4 -2 0 2 4 6
-4
-2
0
2
4
6

-4 -2 0 2 4 6
-4
-2
0
2
4
6

-4 -2 0 2 4 6
-4
-2
0
2
4
6

-4 -2 0 2 4 6
-4
-2
0
2
4
6

-4 -2 0 2 4 6
-4
-2
0
2
4
6

-4 -2 0 2 4 6
-4
-2
0
2
4
6

-4 -2 0 2 4 6
-4
-2
0
2
4
6

-4 -2 0 2 4 6
-4
-2
0
2
4
6

-4 -2 0 2 4 6
-4
-2
0
2
4
6

-4 -2 0 2 4 6

Figure I.6: Two types of margin classifiers: hard on the left, and soft on the right. In the figures,
there are example points, support vectors (triangles and circles), solutions (solid lines), margin
lines (dashed lines). In the right figure, we can see a misclassified point (1, -2)

0 ≤ αi ≤ Cc (I.10)

where
Qij = yiyjK (~xi, ~xj) (I.11)

for all i, j ∈ {1, . . . , n}.

The decision curve is
h∗ (~x) =

n∑
i=1

yicα
∗
iK (~xi, ~x) + b∗c = 0 , (I.12)

where αi are Lagrange multipliers of the dual problem, K (·, ·) is a kernel function which appears
only in the dual problem. The most popular kernel functions are linear, polynomial, radial basis
function (RBF) and sigmoid. A kernel function which is a dot product of its arguments we
call a simple linear kernel. Margin boundaries are defined as the two hyperplanes h (~x) = −1
and h (~x) = 1. Optimal margin boundaries are defined as the two hyperplanes h∗ (~x) = −1 and
h∗ (~x) = 1. The i-th training example is a support vector, when α∗i 6= 0. It can be proved that
a set of support vectors contains all training examples lying below optimal margin boundaries
(yich∗ (~xi) < 1), and most of the examples lying exactly on the optimal margin boundaries
(yich∗ (~xi) = 1).

The KKT complementary condition for OP 2 is

αi
(
yich (~xi)− 1 + ξic

)
= 0 (I.13)

(Cc − αi) ξic = 0 . (I.14)

We can find values of ξi parameters from the solution of the dual form as following. When

yich
∗ (~xi) ≥ 1 , (I.15)

then ξi = 0, else
ξi = 1− yich (~xi) . (I.16)

I.2.2 SVC Without the Offset

Another variant of SVC is the SVC without the offset bc, analyzed recently in [41]. The opti-
mization problem is the same except missing bc term, for the soft case it is

OP 4.
min
~wc, ~ξc

f
(
~wc, ~ξc

)
= 1

2 ‖ ~wc‖2 + ~Cc · ~ξc (I.17)
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subject to
yich (~xi) ≥ 1− ξic + ϕi (I.18)

~ξ ≥ 0 (I.19)

for i ∈ {1, . . . , n}, where
~Cc � 0 (I.20)

ϕic ∈ R (I.21)

h (~xi) = ~wc · ~xi . (I.22)

The dual problem is

OP 5.
max
~α

d (~α) = ~α · (1 + ~ϕ)− 1
2
~αTQ~α (I.23)

subject to
0 ≤ ~α ≤ ~C (I.24)

where Qij = yiyjK (~xi, ~xj), for all i, j ∈ {1, . . . , n}.

We can notice missing linear constraint. The decision curve is

h∗ (~x) =
n∑
i=1

yicα
∗
iK (~xi, ~x) = 0 , (I.25)

I.2.3 ν-SVC

Another variant of SVC is ν support vector classification (ν-SVC) where we replace C by ν ∈
[0, 1]. The modified optimization problem is

OP 6.
min
~w,b,~ξ,p

f
(
~w, b, ~ξ, p

)
= 1

2 ‖~w‖
2 − νp+ 1

n

n∑
i=1

ξic (I.26)

subject to
yih (~xi) ≥ p− ξi (I.27)

~ξ ≥ 0 (I.28)

p ≥ 0 (I.29)

for i ∈ {1, . . . , n}, where
~C � 0 (I.30)

h (~xi) = ~w · ~xi + b . (I.31)

We can notice different cost function, the additional variable p and the additional constraint.

I.3 SVR Optimization Problems
In a regression problem, we consider a set of training vectors ~xi for i ∈ {1, . . . , n}, where
~xi =

(
x1
i , . . . , x

m
i

)
. The i-th training vector is mapped to yir ∈ R. The m is a dimension of the

problem. The ε-SVR soft case optimization problem is

OP 7.
min

~wr,br,~ξr, ~ξ∗r

f
(
~wr, br, ~ξr, ~ξ∗r

)
= 1

2 ‖ ~wr‖2 + Cr

n∑
i=1

(
ξir + ξ∗ir

)
(I.32)

subject to
yir − g (~xi) ≤ ε+ ξir (I.33)
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Figure I.7: The idea of ε-SVR. In the figure, there are examples, support vectors (circles), a
solution (solid line), and ε boundaries (dashed lines)

g (~xi)− yir ≤ ε+ ξi∗r (I.34)
~ξr ≥ 0 (I.35)
~ξ∗r ≥ 0 (I.36)

for i ∈ {1, . . . , n}, where
g (~xi) = ~wr · ~xi + br . (I.37)

The g∗ (~x) = ~w∗r · ~x+ b∗r is a regression function. Optimization problem 7 is transformed to
an equivalent dual problem. The regression function becomes

g∗ (~x) =
n∑
i=1

(α∗i − β∗i )K (~xi, ~x) + b∗r , (I.38)

where αi, βi are Lagrange multipliers, K (·, ·) is a kernel function. The i-th training example is
a support vector, when α∗i − β∗i 6= 0. It can be proved that a set of support vectors contains all
training examples lying outside ε boundaries, and most of the examples which lie exactly on ε
boundaries. The number of support vectors can be controlled by ε parameter.

I.4 Incorporating Prior Knowledge to SVM
Various schemes of incorporating prior knowledge to SVM optimization problem have been
already proposed. They belong to the following categories:

1. a modified cost function (either primal or dual),

2. modified constraints (either primal or dual),

3. new constraints (either primal or dual),

Besides listed categories, modification of input data, solution or a kernel is possible. Some incor-
porations requires many changes of an optimization problem, new variables or new parameters.
A survey on incorporating prior knowledge to SVM is in [19, 20]. In this thesis, we are concen-
trated on knowledge per example, especially formulated in the form of additional parameters to
an optimization problem for every example.

One of the type of weights per example are weights meaning different misclassification costs
Ci per example. The special case is a different cost of wrong classification for negative and
positive training examples C+ and C− used for incorporating knowledge about unbalanced data
for C support vector machines (C-SVM) [13], for ν support vector machines (ν-SVM) [47]. The
Ci weights were also used for fuzzy support vector machines [23], for denoting confidence of
pseudo labels [46] and for denoting confidence dependent on quality of the data [51]. A 1-norm
soft margin SVC optimization problem for training examples ~xi with weights Ci is

9
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OP 8.
min
~w,b,~ξ

f
(
~w, b, ~ξ

)
= 1

2 ‖~w‖
2 + ~Cc · ~ξ (I.39)

subject to
yih (~xi) ≥ 1− ξi (I.40)

~ξ ≥ 0 (I.41)

for i ∈ {1, . . . , n}, where
~Cc � 0 (I.42)

h (~xi) = ~w · ~xi + b . (I.43)

The Ci weights were also used with ε-SVR for predicting time series data [42]. The formu-
lation is as follows:

OP 9.
min

~wr,br,~ξr, ~ξ∗r

f
(
~wr, br, ~ξr, ~ξ∗r

)
= 1

2 ‖ ~wr‖2 + ~Cr

n∑
i=1

(
ξir + ξ∗ir

)
(I.44)

subject to
yir − g (~xi) ≤ ε+ ξir (I.45)

g (~xi)− yir ≤ ε+ ξi∗r (I.46)
~ξr ≥ 0 (I.47)
~ξ∗r ≥ 0 (I.48)

for i ∈ {1, . . . , n}, where
~Cr � 0 (I.49)

g (~xi) = ~wr · ~xi + br . (I.50)

The other type of weights, which were used with ε-SVR, are εi weights per example replacing
the parameter ε. They were used for density estimation [45]. The optimization problem with
additional weights εi is

OP 10.
min

~wr,br,~ξr, ~ξ∗r

f
(
~wr, br, ~ξr, ~ξ∗r

)
= 1

2 ‖ ~wr‖2 + Cr

n∑
i=1

(
ξir + ξ∗ir

)
(I.51)

subject to
yir − g (~xi) ≤ εi + ξir (I.52)

g (~xi)− yir ≤ εi + ξi∗r (I.53)
~ξr ≥ 0 (I.54)
~ξ∗r ≥ 0 (I.55)

for i ∈ {1, . . . , n}, where
g (~xi) = ~wr · ~xi + br . (I.56)

Sometimes we use different ε weights for inequalities (I.52), (I.53), thus instead of εi weights
we have only two weights εu and εd

OP 11.
min

~wr,br,~ξr, ~ξ∗r

f
(
~wr, br, ~ξr, ~ξ∗r

)
= 1

2 ‖ ~wr‖2 + Cr

n∑
i=1

(
ξir + ξ∗ir

)
(I.57)

subject to
yir − g (~xi) ≤ εu + ξir (I.58)

g (~xi)− yir ≤ εd + ξi∗r (I.59)

10
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~ξr ≥ 0 (I.60)
~ξ∗r ≥ 0 (I.61)

for i ∈ {1, . . . , n}, where
g (~xi) = ~wr · ~xi + br . (I.62)

And finally we can also use εiu and εid weights. We can notice that changing yir value by ∆yir
is equivalent to changing εiu by −∆yir and changing εid by ∆yir.
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Chapter II

Regression Based on Binary
Classification

Recently, an alternative regression method was proposed [33, 24], which is called δ-SVR. The
idea of the new method is to duplicate and shift data in order to use SVC to solve regression
problems. The δ-SVR possesses the same important advantages as ε-SVR: it leads to convex
optimization problems, it generates sparse solutions, kernel functions can be used for generating
nonlinear solutions. It was shown experimentally, that δ-SVR can achieve comparable or better
generalization performance compared to ε-SVR [33]. It was also reported in [33] that some type
of prior knowledge already incorporated to SVC can be directly used for regression problems.
The δ-SVR has a potential to use a much broader type of modifications and improvements of
SVC directly for regression problems without need of reinventing them for specialized regression
methods like ε-SVR. In this thesis, we focus on analyzing some important properties of δ-SVR
regarding its ability to generalize, realize structural risk minimization (SRM), and generate
sparse solutions.

The topic of connection between classification and regression problems was investigated by
Vapnik [44, 45]. Vapnik proposed generalization of capacity concepts introduced for classifica-
tion to regression problems by describing regression functions as a complete set of indicators,
see Appendix C.1. Based on this idea a method for solving regression problems as multiclass
classification problems was proposed, [11, 16, 7]. The method uses discretization process to
generate multiclass labels. Some attempts also were made to combine SVR with SVC [49]. The
concept used in δ-SVR is different, we increase input dimension by 1 and create binary labels for
duplicated and shifted points up and down, so we solve only one binary classification problem.
The concept of duplicating and shifting data was first published in [24], it was investigated inde-
pendently by the author and submitted to [31] and published in [33]. The main problem of the
realization of the concept in [24] is that an additional optimization problem must be solved every
time a new example is tested in order to find a solution of the implicit equation; the authors
use a golden section method. Moreover, two problems arise with this workaround: the solution
might not exist, there could be more than one solution. In [33], authors proposed a special type
of kernels for which a unique solution is guaranteed and it is easily achievable by an explicit
formula without the need of solving an additional optimization problem. Furthermore, in [33],
the author proposed using the method to incorporate margin knowledge which was previously
incorporated to SVC for classification problems in [30, 34], directly for regression problems.
The author noticed that the method has a potential to use a much broader type of extensions
of SVC directly for regression problems, without the need of incorporating them additionally
for specialized regression methods like ε-SVR which is a practice nowadays. In [24], authors
proposed an improvement to the method, for further increasing a sparseness of the solution by
decreasing a value of a shifting parameter for examples with low and high values of the output,
although it requires tuning an additional parameter during a training phase.

The goals of the research presented in this thesis were to analyze a general concept of rep-
resenting regression problems as classification ones by duplicating and shifting data, to analyze
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Figure II.1: The idea of the problem transformation in δ-SVR for 2d. In the left figure, there
are regression example points. In the right figure, there are classification example points af-
ter transformation, support vectors (triangles and circles), solution (a solid line), margin lines
(dashed lines)

potential generalization improvements of δ-SVR over SVM and to improve experiments con-
ducted in [33]. The outline of the thesis is as follows. In the first section, we give an introduction
to the idea of a set of indicator functions. In the second section, we give a theoretical analysis
of the transformation. In the third section, we analyze generalization abilities of δ-SVR. In the
fourth section, we present experiments on synthetic and real world data sets.

II.1 Introduction to δ-SVR
We consider a set of training vectors ~xi for i ∈ {1, . . . , n}, where ~xi =

(
x1
i , . . . , x

m
i

)
. The i-th

training vector is mapped to yir ∈ R. The δ-SVR method is based on the following scheme of
finding a regression function:

1. Every training example ~xi is duplicated, an output value yir is increased by a value of a
parameter δ ≥ 0 for original training examples, and decreased by δ for duplicated training
examples.

2. Every training example ~xi is converted to a classification example by incorporating the
output to the input vector as an additional feature and setting class 1 for original training
examples, class −1 for duplicated training examples.

3. The SVC method is launched for a classification problem.

4. The solution of SVC method is converted back to function form.

The idea of the transformation is depicted in Fig. II.1, Fig. II.2.
The result of the first step is a set of training mappings for i ∈ {1, . . . , 2n}{

~bi =
(
x1
i , . . . , x

m
i

)
→ yir + δ for i ∈ {1, . . . , n}

~bi =
(
x1
i−n, . . . , x

m
i−n
)
→ yi−nr − δ for i ∈ {n+ 1, . . . , 2n}

(II.1)

for δ ≥ 0. The δ is called the translation parameter. The result of the second step is a set of
training mappings for i ∈ {1, . . . , 2n}{

~ci =
(
b1
i , . . . , b

m
i , y

i
r + δ

)
→ 1 for i ∈ {1, . . . , n}

~ci =
(
b1
i , . . . , b

m
i , y

i−n
r − δ

)
→ −1 for i ∈ {n+ 1, . . . , 2n} (II.2)

for δ ≥ 0. The dimension of the ~ci vectors is equal to m+ 1. The set of ~xi mappings is called a
regression data setting, the set of ~ci ones is called a classification data setting. In the third step,
OP 2 is solved with ~ci examples. Note that h∗ (~x) is in the implicit form of the last coordinate
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Figure II.2: The idea of the problem transformation in δ-SVR for 3d. In the left figure, there
are regression example points. In the right figure, there are classification example points after
transformation, support vectors (triangles and circles), solution (a plane)

of ~x. In the fourth step, an explicit form of the last coordinate needs to be find. The explicit
form is needed for example for testing new examples. The ~wc variable of the primal problem for
a simple linear kernel is found based on the solution of the dual problem in the following way

~wc =
2n∑
i=1

yicαi~ci , (II.3)

where yic = 1 for i ∈ {1, . . . , n} and yic = −1 for i ∈ {n+ 1, . . . , 2n}. For a simple linear kernel
the explicit form of (I.12) is

xm+1 =
−
∑m
j=1w

j
cxj − bc

wm+1
c

. (II.4)

The regression solution is g∗ (~x) = ~wr · ~x + br, where wir = −wic/wm+1
c , br = −bc/w

m+1
c for

i = 1, . . . ,m. For nonlinear kernels, a conversion to the explicit form has some limitations.
First, a decision curve could have more than one value of the last coordinate for specific values
of remaining coordinates of ~x and therefore it cannot be converted unambiguously to the function
(e.g. a polynomial kernel with a dimension equals to 2). Second, even when the conversion to
the function is possible, there is no explicit analytical formula (e.g. a polynomial kernel with a
dimension greater than 4), or it is not easy to find it and hence a special method for finding the
explicit formula of the coordinate should be used, e.g. a bisection method. The disadvantage of
this solution is a longer time of testing new examples. To overcome these problems, we propose
to incorporate prior knowledge to the classification problem, that the solution will be always in
the form of the function in the chosen direction. Thus, we propose a new kernel type in which
the last coordinate is placed only inside a linear term [33]. The new kernel is constructed from
an original kernel by removing the last coordinate, and adding the linear term with the last
coordinate. For the most popular kernels polynomial, RBF and sigmoid, the conversions are
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respectively

(~x · ~y)d →
(

m∑
i=1

xiyi

)d
+ xm+1ym+1 , (II.5)

exp−‖~x− ~y‖
2

2σ2 → exp−
∑m
i=1 (xi − yi)2

2σ2 + xm+1ym+1 , (II.6)

tanh ~x~y → tanh
m∑
i=1

xiyi + xm+1ym+1 , (II.7)

where ~x and ~y are here m + 1 dimensional vectors. The proposed method of constructing new
kernels always generates a function fulfilling Mercer’s condition, because it generates a function
which is a sum of two kernels. For the new kernel type, the explicit form of (I.12) for δ-SVR is

xm+1 =
−
∑2n
i=1 y

i
cαiKo

(
~bi, ~xr

)
− bc∑2n

i=1 y
i
cαic

m+1
i

, (II.8)

where ~xr = (x1, . . . , xm), Ko (·, ·) is the original kernel from which the new one was constructed
((II.5),(II.6),(II.7)).

II.1.1 Support Vectors

The SVC in δ-SVR is executed on duplicated number of examples and therefore the maximal
number of support vectors of SVC is 2n. We can reformulate (II.8) as

xm+1 =
−
∑n
i=1 (αi − αn+i)Ko

(
~bi, ~xr

)
− bc∑2n

i=1 y
i
cαic

m+1
i

. (II.9)

We call support vectors for δ-SVR vectors for which αi−αn+i 6= 0. The final number of support
vectors for δ-SVR is maximally equal to n.

II.1.2 Basic Comparison With ε-SVR

The general idea of δ-SVR is that instead of finding the best model on original data sample (like
ε-SVR does), it finds the best model among multiple data transformations.

Both methods δ-SVR and ε-SVR have the same number of free parameters. For ε-SVR: C,
kernel parameters, and ε. For δ-SVR: C, kernel parameters and δ. Each of them returns sparse
solutions. Both parameters ε and δ control the number of support vectors.

There is an interesting relation between δ-SVR and ε-SVR for the proposed new kernels. We
can write inequality constraints for δ-SVR as:

− ~wrc · ~xri − w
m+1
c

(
xm+1
i − δ

)
− bc ≥ 1− ξic (II.10)

~wrc · ~xri + wm+1
c

(
xm+1
i + δ

)
+ bc ≥ 1− ξ∗ic (II.11)

After reformulation:

− ~wrc · ~xri − bc ≥ w
m+1
c xm+1

i − wm+1
c δ + 1− ξic (II.12)

~wrc · ~xri + bc ≥ −wm+1
c xm+1

i − wm+1
c δ + 1− ξ∗ic (II.13)

For wm+1
c > 0 we get

− ~wrc · ~xri − bc
wm+1
c

≥ xm+1
i − δ + 1

wm+1
c

− ξic
wm+1
c

(II.14)
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~wrc · ~xri + bc

wm+1
c

≥ −xm+1
i − δ + 1

wm+1
c

− ξ∗ic
wm+1
c

(II.15)

After transforming to regression convention we get:

yir − g (~xi) ≤ δ −
1

wm+1
c

+ ξic
wm+1
c

(II.16)

g (~xi)− yir ≤ δ −
1

wm+1
c

+ ξ∗ic
wm+1
c

(II.17)

After changing notation from wm+1
c to v, we get the following optimization problem:

OP 12.
min

~wr,br,~ξr, ~ξ∗r ,v
f
(
~wr, br, ~ξr, ~ξ∗r , v

)
= ‖ ~wr, v‖2 + Cr

n∑
i=1

(
ξir + ξ∗ir

)
(II.18)

subject to
~ξr ≥ 0 (II.19)
~ξ∗r ≥ 0 (II.20)

and for v > 0
yir − g (~xi) ≤ δ −

1
v

+ ξir
v

(II.21)

g (~xi)− yir ≤ δ −
1
v

+ ξ∗ir
v

(II.22)

and for v < 0
yir − g (~xi) ≥ δ −

1
v

+ ξir
v

(II.23)

g (~xi)− yir ≥ δ −
1
v

+ ξ∗ir
v

(II.24)

for i ∈ {1, . . . , n}, where
g (~xi) = ~wr · ~xi + br . (II.25)

We can notice that when we have the solution of OP 12 and v∗ > 0, the same solution can
be found by OP 7 with the parameters set to

ε = δ − 1
v∗

(II.26)

and
Cnew
r = Crv

∗ , (II.27)

and for v∗ < 0, we have
ε = −δ + 1

v∗
(II.28)

and
Cnew
r = −Crv∗ . (II.29)

We can replace the first constraint for v∗ < 0 with

ε = 0 (II.30)

due to the following proposition.

Proposition II.1.1. OP 7 for ε < 0 returns the same solution as for ε = 0.

Proof. We will prove that the error difference between any two solution candidates after lowering
ε from 0 to negative value remains unchanged. We have two solution candidates s1 and s2 with

17



II.2 Analysis of the Transformation Regression Based on Binary Classification

the following points: points with errors (pe) and colinear points lying on the solution candidate,
without errors. In the second group, we can further distinguish points which lie on both solution
candidates (pcsc) and others (pcss). So we have two sets for both candidates{

p1
e, p

1
css, pcsc

}
(II.31)

{
p2
e, p

2
css, pcsc

}
(II.32)

Because p2
css ⊂ p1

e and p1
css ⊂ p2

e so we can divide pe to points pcss from other group and others
(per). We can notice that

∣∣p1
er

∣∣ =
∣∣p2
er

∣∣. So we have{
per, p

2
css, p

1
css, pcsc

}
(II.33)

{
per, p

1
css, p

2
css, pcsc

}
(II.34)

For solution 1, the error difference is(
|per|+

∣∣∣p2
css

∣∣∣)∆ε+
(∣∣∣p1

css

∣∣∣+ |pcsc|)∆ε (II.35)

adn for the second solution the error difference is(
|per|+

∣∣∣p1
css

∣∣∣)∆ε+
(∣∣∣p2

css

∣∣∣+ |pcsc|)∆ε (II.36)

They are equal.

We can see that when we fix the variable v to some value, we can get the same solution
by using ε-SVR. But the additional variable plays important role in improving ε-SVR. Let’s
consider the following example. For big value of ε, ε-SVR tends to return flat solutions, and in
extreme it returns the solution y = c, where c is some constant. It is obvious that such extreme
solutions in most cases will not be good. We may decrease the value of ε to improve the solution.
The δ-SVR, on the other hand, has the additional variable v which eliminates tendency to return
flat solutions. Consider two values of v, v1 and v2 < v1, where v1, v2 > 0. Assume that v1 value
corresponds to the ε-SVR solution which is flat. The ability to decrease a value of v is related
to decreasing the ε bounds which is supported by the term v in the minimizer. It means that
δ-SVR can automatically decrease the ε value.

II.1.3 Practical Realization

In practical realization, we find the best value of δ with a double grid search method by comparing
some type of error measure. In grid search method, we compare errors not on classification
data, but on original regression data by using the regression function transformed from the
classification boundary. We usually use mean squared error (MSE).

II.1.4 Weighting the Translation Parameter

We can consider incorporating prior knowledge by setting different values of the translation
parameter for each example, so we can have δi parameters, for i ∈ {1, . . . , n} and the same
parameters for i ∈ {n+ 1, . . . , 2n}. We can also consider setting different values of δ for up and
down translations, so we can have two parameters: δu and δd. And finally we can also consider
the parameters δiu and δid.

II.2 Analysis of the Transformation

We analyze a general concept of representing regression problems as classification ones by dupli-
cating and shifting data, introduced in δ-SVR. Intuitively, the transformed classification problem
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should lead to the similar results as the original regression one, Fig. II.1, Fig. II.2. We show the
equivalency of Bayes solutions for regression and transformed classification problems for some
special cases.

Random mapping ~xr → yr is duplicated and original random mapping is translated up, and
duplicated one is translated down. The random mapping is converted to random variable ~xc,
and original random variable gets 1 class, and duplicated one gets −1 class. We can notice that
transformed data has a special distribution Fc ( ~xc) where random coordinate xm+1 is dependent
on the remaining coordinates; for δ = 0, Fc ( ~xc) ≡ Fr (~xr, yr).

After transformation, Bayes optimal classification depends on a sign of

Pr (1 | ~xc)− Pr (−1 | ~xc) . (II.37)

A Bayes decision boundary is a group of points for which Pr (1 | ~xc) ≡ Pr (−1 | ~xc). A regression
function is defined as

r (~xr) = E [yr | ~xr] . (II.38)
Theorem II.2.1. For a unimodal, symmetric probability distribution Fr (yr | ~xr) of original
examples, Bayes decision boundary of the transformed classification problem is equivalent geo-
metrically to the regression function for every δ ≥ 0.

(Proof is in Appendix C.2). The theorem states that assuming symmetrical errors in the
regression output, for any nonnegative value of δ the transformed classification problem is equiv-
alent to the original one. The theorem can be extended to different unimodal, symmetric distri-
butions per point (Fxr (yr | ~xr)), with the same effect. The question arises about nonsymmetric
distributions.

For nonsymmetric (skewed), unimodal distributions the mean is different from the mode.
For such distributions the mean lies on the side of a mode with a bigger variance. It can be
noticed that after translating by δ, Bayes optimal decision boundary lies on the same side of the
mode as the mean. Therefore it seems that δ-SVR could also handle nonsymmetric distribution
of errors efficiently. We can reach the equivalency in two ways, either by choosing proper δ or
by using δu and δd parameters instead of δ. First we propose the following theorem
Theorem II.2.2. When F (m+ δ) − F (m− δ) ≥ 0 is fulfilled for some δ > m, then for
a unimodal, probability distribution Fr (yr | ~xr) of original examples, Bayes decision boundary
of the transformed classification problem is equivalent geometrically to the regression function,
where m > 0 is the expected value.

(Proof is in Appendix C.3). The theorem states that by testing different values of δ we can
reach the equivalency of the problems for the nonsymmetrical case, when the distribution fulfills
some general assumptions. And finally we can use δu and δd parameters
Theorem II.2.3. For a unimodal, nonsymmetric probability distribution Fr (yr | ~xr) of original
examples, Bayes classification of the transformed classification problem is equivalent geometri-
cally to the regression function for some ratio δu/δd for every δu ≥ 0.

When δu/δd = 1, then we do not have skewness in data at all. When δu/δd > 1 the
distribution has a bigger variance on the upper side of the optimal regression function. The above
theorem implicates that it would be possible to improve the results for nonsymmetrical regression
errors by introducing the new parameter to δ-SVR. The disadvantage of this improvement is
that a value of the ratio must be found either by experiments (this is an additional parameter
that must be tuned) or by testing the skewness of the distribution. This extension of δ-SVR
will be evaluated practically in the future.

II.3 Generalization Ability of δ-SVR
Vapnik developed statistical learning theory and SVM based on it [44, 45]. The key point in
statistical learning theory is the analysis of generalization capabilities of machine learning meth-
ods without assuming any particular data distribution. The δ-SVR for particular values of δ
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uses SVC for solving classification problems, therefore all analysis of generalization capabilities
of SVC are applicable for δ-SVR for any δ. The δ-SVR provides the known dependency to
the distribution of the classification data without reducing the possible universe of the prob-
lems. Therefore we will first analyze how this distribution constraint influences generalization
capabilities of machine learning methods.

In this section we compare empirical risk minimization (ERM) principle for the original
regression problem and transformed classification problems. Then we compare realization of
SRM by ε-SVR and δ-SVR. And finally we consider generalization bounds for SVC for shifted
data without assuming any data distribution.

II.3.1 Empirical Risk Minimization for δ-SVR

The ERM principle states that we should minimize empirical risk. It means that for classification
problems we should minimize the number of training errors, and for regression problems we
should minimize the sum of training errors. So empirical risk for regression is a real number
measure, for classification it is a discrete measure. For transformed classification problems when
increasing value of δ starting from zero, a minimum of the classification empirical risk decreases
and tends to zero

Remp (αl) →
δ→∞

0 , (II.39)

where αl is a curve for which Remp is minimal. In practice, for particular sample data we
can notice that there exists δp for which all training examples are correctly classified. Hence
for all δ ≥ δp transformed data are correctly classified. Moreover for δ ≥ δp there may exist
multiple solutions with no training errors at all. It means that for some values of δ ERM for
classification might hardly give a valuable solution. So for such cases better results could be
obtained by using ERM for regression. The ERM for regression has an advantage that the
output is generally nonzero (e.g. for a linear set of functions where examples are not collinear).
This suggests that the grid search method used for choosing the best value of δ might compare
empirical risk for original regression data instead of comparing empirical risk for classification
data.

The ε-SVR and SVC realize a trade-off between ERM and minimizing a VC dimension which
describes capacity of a learning machine. The ERM for ε-SVR is realized in a standard way by
minimizing a sum of training errors. In SVC, ERM is realized by minimizing a sum of slack
variables (I.4). Therefore for particular δ, δ-SVR which uses SVC also minimizes a sum of slack
variables. It does not minimize ERM for the regression. In the following subsection, we compare
in details similarities and differences between ERM for classification and regression.

II.3.2 Comparison of ERM for ε-SVR and δ-SVR

Comparing ERM for ε-SVR and δ-SVR leads to a comparison of the second terms in cost func-
tions (I.32) and (I.4). Let’s analyze all hypotheses where ‖ ~wc‖ = p and ‖ ~wr‖ = q, where p and
q are some constants such as p, q ≥ 0. First, we define examples involved in realization of ERM,
following [33]: for δ-SVR let’s call a margin boundaries vector or an inside margin boundaries
vector as an essential margin vector and a set of such vectors for particular hypothesis, EMV .
For ε-SVR let’s call ε-tube vector or outside ε-tube one an essential margin vector and a set of
such vectors for particular hypothesis, EMV . By a configuration of essential margin vectors,
labeled CEMV , we call a list of essential margin vectors for particular hypothesis, each with a
distance to the margin boundary.

Let’s imagine all hypotheses for particular p and q. The ε-SVR realizes ERM by finding the
hypothesis which has a minimal value of a sum of differences in distances in an output direction
from EMV to the hypothesis function. The δ-SVR realizes ERM by finding the hypothesis
which has a minimal value of a sum of differences in perpendicular distances in transformed
space between EMV and the hypothesis curve.
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Theorem II.3.1. For ‖ ~wc‖ = p, SVC minimizes a sum of perpendicular distances from the
decision curve to EMV .

Proof. For different hypotheses with ‖ ~wc‖ = p a first term in the cost function (I.4) is constant,
so we minimize only the second term. The distance from the i-th example with nonzero ξi
to margin is ξi/ ‖ ~wc‖. Because the denominator is constant, minimizing distances to examples
lying outside a margin means minimizing sum of ξi.

This theorem leads to the potential relation of SVC to the total least squares regression
method (orthogonal regression) which is used mainly for errors-in-variable data. We can notice
that for completely flat curves sum of perpendicular distances is equal to a sum of distances in
xm+1

c direction (errors-in-output data) and the difference grows for less flat functions. So this
might be the reason of expecting better performance of ERM for δ-SVR for errors-in-output
data, for flat functions. Now when we know how ERM is computed for ε-SVR and δ-SVR for
particular δ and ε, we analyze which examples are involved in computing ERM.

First recall the proposition from [33]

Proposition II.3.2. For two values of δ, δ1 > 0 and δ2 > 0, where δ2 > δ1, for every CEMV
for δ1, there exists the same CEMV for δ2.

When we consider CEMV for δ2, h (~x) = 0 and increasing a value of δ by ∆δ = δ2 − δ1 we
get the same CEMV for ph (~x) = 0, where p = 1/

(
1 + wm+1

c ∆δ
)
. This proposition states that

the same CEMV could be present for multiple values of δ. This is a difference from ε-SVR
where every CEMV is present only once for the one value of ε. We can also notice that the
distance to the margin from the solution for δ2 is 1/ ‖p ~wc‖.

Now let’s investigate a closer relation between ε-SVR and δ-SVR.

Proposition II.3.3. Every CEMV for ε-SVR for particular εs is present in classification
setting in δ-SVR for every δ > δp, where δp = εs.

If we consider CEMV for ε-SVR, after transformation by δ, the margin distance is equal to
δ − ε. We can extend this proposition to the following:

Proposition II.3.4. Every CEMV for ε-SVR for every ε < εs is present in classification
setting in δ-SVR for every δ > δp, where δp = εs.

The above proposition means that for a single value of δ, δ-SVR is able to take into account
a bunch of CEMV from ε-SVR for multiple values of ε. Note that δ-SVR can have CEMV
that do not exist in ε-SVR.

Proposition II.3.5. When |EMV | ≤ n for δ-SVR then the same CEMV exists for ε-SVR.

It is quite obvious that CEMV of δ-SVR where |EMV | > n does not exist for ε-SVR. It can
be noticed that when |EMV | > n, there exists an equivalent EMV for regression when taking
into account optimization for support vectors stated in (II.9). It is a consequence of the fact that
all support vectors for SVC lying below margin boundaries have αi = C which is a conclusion
from Karush-Kuhn-Tucker complementary condition for SVC; therefore they disappear in (II.9)
and are not support vectors for δ-SVR. E.g. when |EMV | is close to 2n we get the very small
number of support vectors for δ-SVR.

Summarizing, based on the above propositions it is most likely that comparing ERM for
particular values of ε and δ, δ-SVR would perform better. Next we will investigate a trade-off
between ERM and capacity minimization (CM).

In order to compare realization of the trade-off between ERM and CM first we rewrite δ-SVR
cost function by incorporating perpendicular distances from EMV to the curve

dic = ξic
‖ ~wc‖

. (II.40)
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δ-SVR minimization function (I.4) can be rewritten as

f
(
~wc, bc, ~ξc

)
= ‖ ~wc‖2 + Cc ‖ ~wc‖

n∑
i=1

dic . (II.41)

When we treat the differences between distances in the last coordinate direction and perpen-
dicular distances negligible, then we can see that the difference between the cost function for
ε-SVR (I.32) and the above for δ-SVR is ‖ ~wc‖. For ε-SVR a trade-off between ERM and CM
is controlled by Cr, for δ-SVR we can also control the trade-off with Cc, but additionally it
is dependent on ‖ ~wc‖. So when the method is looking for the best hypothesis, improving CM
(increasing the margin distance) implicates lowering ERM importance.

Let’s analyze the trade-off while changing a value of δ. For particular CEMV for δ1 increas-
ing δ to δ2, where δ2 > δ1 and preserving the same CEMV leads to

f
(
~wc, bc, ~ξc

)
= p2 ‖ ~wc‖2 + Ccp ‖wc‖

n∑
i=1

dic , (II.42)

where
p = 1

1 + wm+1
c (δ2 − δ1)

, (II.43)

so
f
(
~wc, bc, ~ξc

)
= p2

(
‖ ~wc‖2 + Cc

p
‖wc‖

n∑
i=1

dic

)
, (II.44)

f
(
~wc, bc, ~ξc

)
= p2

(
‖ ~wc‖2 +

(
1 + wm+1

c (δ2 − δ1)
)
Cc ‖wc‖

n∑
i=1

dic

)
. (II.45)

While increasing a value of δ, the trade-off between ERM and CM changes even for the curve
with the same CEMV . The change depends on the last coefficient. For bigger values of wm+1

c ,
the importance of ERM increases greater while increasing δ.

II.3.3 VC Bounds for δ-SVR

In this subsection we consider the translation for δ-SVR independently of the data distribution.
Vapnik proposed generalization bounds which are based on a VC dimension h [45]. With the
probability at least 1− η the inequality holds true

R (α) ≤ Remp (α) + ε (n)
2

(
1 +

√
1 + 4Remp (α)

ε (n)

)
, (II.46)

where
ε (n) = 4ln 2τ + 1

τ
− ln η/4

n
(II.47)

τ = n

h
, (II.48)

h is a VC dimension. Vapnik derived also the bounds for real valued functions when the ad-
missible set of functions is a set of totally bounded functions (0 ≤ Q (z, α) ≤ B). With the
probability at least 1− η the inequality holds true

R (α) ≤ Remp (α) + Bε (n)
2

(
1 +

√
1 + 4Remp (α)

Bε (n)

)
. (II.49)

Therefore the bounds for classification and regression are pretty much the same. They are
independent on data distribution. The key to minimize the right hand side is to control h.
For this purpose Vapnik proposed Structural Risk Minimization. For SVC, it is realized by
controlling the trade-off between ERM and CM. Let’s see the relation of CM to h.
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Consider hyperplanes ~wc · ~x = 0, where ~wc is normalized such that they are in a canonical
form, i.e. for a set of points A = { ~x1, . . . , ~xn}

min
i
| ~wc · ~xi| = 1 . (II.50)

The set of decision functions fw (~x) = sgn ~x · ~wc defined on A, satisfying the constraint ‖ ~wc‖ ≤ Λ
has a VC dimension satisfying

h ≤ min
(
R2Λ2,m+ 1

)
, (II.51)

where R is the radius of the smallest sphere centered at the origin and containing A. This
theorem could be generalized for any hyperplanes, not necessarily crossing the 0 point. The
proof can be found in [39]. So minimization of ‖ ~wc‖ is a minimization of the upper bound on h.

There are two factors that have influence on a VC bound for SVC, Λ and R. The SVC
realizes CM by minimizing the first one. The second factor is rather constant for standard
classification and regression methods. But for δ-SVR, R is not constant, hence it leads to the
opportunity to improve VC bounds.

For δ-SVR, R depends on a value of δ. Let’s consider changing δ from δ1 to δ2, ∆δ = δ2−δ1,
∆δ > 0. After this change a VC bound takes a form

h ≤ p2Λ2 (R+ ∆δ)2 , (II.52)

where
p = 1

1 + wm+1
c ∆δ

. (II.53)

When increasing δ, R is increasing, and Λ is decreasing. Therefore δ is a trade-off between R
and Λ. We can see that it is possible to improve the bound by increasing a value of δ. Consider
the inequality describing the improvement

p2 (R+ ∆δ)2 < R2 . (II.54)

The solution for p > 0 (see Appendix C.4) is

wm+1
c >

1
R

. (II.55)

For p < 0
wm+1

c <
−2
∆δ −

1
R

. (II.56)

Let’s have a look on the example for p > 0, m = 1. Consider a bunch of hypotheses with
‖ ~wc‖ = c, we can rewrite the decision curve as a function of the last coordinate

xm+1
c = −wmc xmc /wm+1

c . (II.57)

For wmc < 0 increasing slope is done by decreasing wm+1
c and increasing wmc . It means that for

less positive slope we expect better VC bound.

Therefore generally δ-SVR has a potential to improve a VC bound by shifting without
worsening empirical risk (II.39).

Let’s consider VC bounds for δ-SVR and ε-SVR. We start the analysis from the classification
problem introduced by δ-SVR for some δ. The δ-SVR uses SVC to solve it, so we realize CM
by using the term ‖wc‖2. The ε-SVR can be interpreted as δ-SVR with lack of the last variable,
see OP 12. So ε-SVR does not minimize the whole term ‖wc‖2, but the term without the last
coefficient. So we think that δ-SVR better realizes SRM principle than ε-SVR.
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II.4 Experiments

For solving ε-SVR and SVC for particular parameters we use LibSVM [3] ported to Java. For all
data sets, every feature is scaled linearly to [0, 1] including an output. For variable parameters
like C, σ for the RBF kernel, we use a double grid search method for finding the best values.
The number of values searched by the grid method is a trade-off between an accuracy and a
speed of simulations. Note that for particular data sets, it is possible to use more accurate grid
searches than for massive tests with multiple number of simulations. All tests are performed
either on synthetic or real world data sets. Synthetic data sets are generated from particular
functions with added Gaussian noise for output values, Table II.2. We performed tests with a
linear kernel on linear functions, with a polynomial kernel on the polynomial function, with the
RBF kernel on the sine function.

The real world data sets were taken from the LibSVM site [22] except stock price data,
Table II.3. They originally come from UCI Machine Learning Repository and StatLib DataSets
Archive. The stock price data consist of monthly prices of the Dow Jones Industrial Average
(DJIA) index from 1898 up to 2010. We generated the stock data as follows: for every month
the output value is a growth/fall comparing to the next month. Every feature i is a percent
price change between the month and the i-th previous month.

For all tests we choose a size of training sets fulfilling n/h < 20. Recently, double-cross
validation were used for SVM [52]. We use double cross validation for comparing performance
of δ-SVR with ε-SVR, 5 fold inner cross validation is used. Outer cross validation is slightly
modified it order to allow using a small training set size: if a training set size is less than a
half of all known mappings, then we use cross validation but for training data, otherwise we
use standard cross validation. The number of steps for outer cross validation is shown in simC
column. When it is greater then the number of possible steps for cross validation additional
data shuffles are performed.

In the first experiment, we check the theoretical result from Prop. II.3.4 by comparing the
number of support vectors and generalization performance for some particular values of δ and
ε. In the second experiment we compare the generalization performance for variable δ and ε.

II.4.1 First Experiment

In the first experiment, we check the theoretical result from Prop. II.3.4 that |EMV | is much
broader for δ-SVR than for ε-SVR for particular values of δ and ε, so we check how |EMV |
depends on a value of ε and δ. For this purpose we compare the number of support vectors for
the same values of δ and ε. We expect greater number of support vectors especially when values
of the parameters increases and the number of support vectors for ε-SVR is close to 0. Results
are depicted in Fig. II.3, Fig. II.4.

We can see that for ε-SVR the number of support vectors decreases while increasing ε. We
can see that while the number of support vectors is close to zero for ε-SVR, δ-SVR can return
a solution with more support vectors, therefore δ-SVR can return better solutions than ε-SVR
while comparing a broad range of values of δ and ε.

In the second part of the first experiment we compare generalization performance for δ-
SVR and ε-SVR for various values of δ and ε. We expect based on the results from the previous
experiment that δ-SVR will achieve better generalization performance especially for some values
of parameters for which we notice a differences in the number of support vectors. We can see
in Table II.1, Fig. II.5, Fig. II.6 that generally performance for δ-SVR is better than ε-SVR for
various δ and ε. We can see that for abalone, some caData and housing, data performance of
δ-SVR is similar to the best performance for any δ in checked range, which is the difference from
ε-SVR when performance decreases sharply while increasing ε.

The results are valuable in practice when we do not have enough time resources to find the
best values of δ and ε, and we have to stick with some values chosen a priori. Then we expect
better generalization performance of δ-SVR than ε-SVR for some value of δ and ε. In the next
experiment we will compare results for variable δ and ε.
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Figure II.3: Relation between ε, δ and the number of support vectors. In the figure, there is
a relationship between value of ε for a line with ’+’ and the number of support vectors, and a
relationship between a value of δ for a line with ’x’ and the number of support vectors for the
tests with ids: 1,4,5,10,11,12 from Table II.2 and Table II.3 respectively

Table II.1: Relation between ε, δ and RMSE. Column descriptions: id – an id of a test, ε,δ – a
value of a parameter ε or δ, ti – a percentage difference in RMSE between ε-SVR and δ-SVR
for the i-th test, positive means that δ-SVR has smaller RMSE

id ε,δ t1 t4 t5 t10 t11 t12 t13 t14 t15 t16

1 0.01 −1.24 −2.5 1.0 −4.1 −14.8 −5.54 −14.4 −1.24 −6.22 −9.24
2 0.04 −0.05 −0.4 1.8 0.1 3.64 −0.07 1.03 −0.05 1.01 −1.03
3 0.16 53.8 49.4 −0.47 18.3 21.3 20.1 3.1 53.8 8.5 8.74
4 0.32 −58.5 72 −0.54 39.5 39.3 37.5 14.5 75.9 24.7 37.67
5 0.64 46.3 6.0 2.97 36.2 42.1 44.6 25.9 46.3 23 45.7
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Figure II.4: Relation between ε, δ and the number of support vectors, cont. In the figure, there
is a relationship between value of ε for a line with ’+’ and the number of support vectors, and
a relationship between a value of δ for a line with ’x’ and the number of support vectors for the
tests with ids: 13,14,15,16 from Table II.2 and Table II.3 respectively

II.4.2 Second Experiment

In the second experiment we compare generalization performance of ε-SVR and δ-SVR for
variable ε and δ. We use a double grid search method for finding the best values of ε and δ.

Test results on synthetic data sets are presented in Table II.2. We can notice similar gen-
eralization performance for both δ-SVR and ε-SVR without any statistical difference based on
t-test. However, we can notice an improved number of support vectors for δ-SVR for all tests
which is also statistically significant for most of the tests.

For real world data sets, results are presented in Table II.3. We can notice similar gener-
alization performance for both δ-SVR and ε-SVR without any statistical difference based on
t-test. However, we can notice the improved number of support vectors for δ-SVR for half of
the tests which is also statistically significant (see Table II.3).

II.5 Summary

In this thesis, we analyzed a novel regression method, called δ-SVR. We conducted experiments
comparing δ-SVR with ε-SVR on synthetic and real world data sets. The results indicate that
δ-SVR achieves comparable generalization error. The first advantage of δ-SVR is fewer number
of support vectors. Thus we get simpler predictive models. Therefore, computational time
of testing new examples is decreased. The next advantage is smaller generalization error over
different values of ε and δ. Therefore, there exists possibility to decrease time of training, but
with accepting suboptimal solutions. The next advantage is faster time of training for linear
kernels while using SMO solver. The last advantage of δ-SVR, but not least, is the possibility
of replacing standard SVC classification method by any other classification method based on
kernel functions, implicating potential extension of applicability of a broad group of methods of
classification for regression problems. In particular, any improvements for classification methods

26



Regression Based on Binary Classification II.5 Summary

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
M
SE

ε,δ

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
M
SE

ε,δ

ε-SVR
δ-SVR

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
R
M
SE

ε,δ

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
R
M
SE

ε,δ

ε-SVR
δ-SVR

0.2
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29
0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
M
SE

ε,δ

0.2
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29
0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
M
SE

ε,δ

ε-SVR
δ-SVR

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
M
SE

ε,δ

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
M
SE

ε,δ

ε-SVR
δ-SVR

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
M
SE

ε,δ

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
M
SE

ε,δ

ε-SVR
δ-SVR

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
M
SE

ε,δ

0

0.05

0.1

0.15

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

R
M
SE

ε,δ

ε-SVR
δ-SVR

Figure II.5: Relation between ε, δ and RMSE. In the figure, there is a relationship between
value of ε for a line with ’+’ and RMSE, and a relationship between a value of δ for a line with
’x’ and RMSE for the tests with ids: 1,4,5,10,11,12 from Table II.2 and Table II.3 respectively
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Table II.2: The δ-SVR performance for synthetic data. Column descriptions: id – an id of
a test, a function – a function used for generating data y1 =

∑dim
i=1 xi, y4 =

(∑dim
i=1 xi

)kerP
,

y5 = 0.5
∑dim
i=1 sin 10xi + 0.5, simC – the number of simulations, results are averaged, σ – a

standard deviation used for generating noise in output, ker – a kernel (pol – a polynomial
kernel), kerP – a kernel parameter (for a polynomial kernel it is a dimension, for the RBF kernel
it is σ), trs – a training set size, tes – a testing set size, dm – a dimension of the problem,
dm = m, idRef – a reference to the first table, tr12M – a percent average difference in MSE
for training data, if greater than 0 than δ-SVR is better, te12M – the same as tr12M, but for
testing data, teT – t value for the t-test for comparing testing error, s1 – the average number
of support vectors for ε-SVR, s2 – the average number of support vectors for δ-SVR, sT – t
value for the t-test for comparing the number of support vectors. The value ’var’ means that
we search for the best value

id function simC σ ker kerP trs tes dm

1 y1 100 0.04 lin — 120 1000 4
2 y2 = 3y1 100 0.04 lin — 120 1000 4
3 y3 = 1/3y1 100 0.04 lin — 120 1000 4
4 y4 100 0.04 pol 3 120 1000 4
5 y5 10 0.04 rbf var 100 1000 4

idRef tr12M te12M teT s1 s2 sT

1 −0.3% −0.4% −0.4 72 57 3.6
2 −0.3% −0.3% −0.3 70 61 1.8
3 −0.2% −0.2% −0.3 73 58 3.2
4 −2.3% −0.4% −0.2 73 68 1.2
5 −88% −2.4% −0.9 79 54 1.6
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Table II.3: The δ-SVR performance for real world data. Column descriptions: id – an id of a
test, a name – a name of the data set, simC – the number of random simulations, where training
data are randomly selected, results are averaged, ker – a kernel (pol – a polynomial kernel), kerP
– a kernel parameter (for a polynomial kernel it is a dimension, for the RBF kernel it is σ), trs
– a training set size, all – the number of all data, it is a sum of training and testing data, dm –
a dimension of the problem, dm = m, idRef – a reference to the first table, tr12M – a percent
average difference in MSE for training data, if greater than 0 than δ-SVR is better, te12M – the
same as tr12M, but for testing data, teT – t value for the t-test for comparing testing error, s1
– the average number of support vectors for ε-SVR, s2 – the average number of support vectors
for δ-SVR, sT – t value for the t-test for comparing the number of support vectors. The value
’var’ means that we search for the best value

id name simC ker kerP trs all dm

10 abalone 100 lin — 180 4177 8
11 abalone 10 pol 5 180 4177 8
12 abalone 100 rbf var 180 4177 8
13 caData 100 lin — 180 20640 8
14 caData 100 pol 5 180 20640 8
15 caData 10 rbf var 180 20640 8
16 housing 10 lin — 280 506 13
19 stock 100 lin — 100 1351 10
20 stock 10 pol 5 100 1351 10
21 stock 10 rbf var 100 1351 10

idRef tr12M te12M teT s1 s2 sT

10 −0.2% 0.8% 1.3 90 91 −0.2
11 2.1% −16.3% −0.65 118 120 −0.1
12 −1.4% 1.4% 1.1 103 92 1.74
13 −0.6% −1.3% −1.9 91 80 2.1
14 0.5% 2.7% 0.5 99 99 0.0
15 −5.7% 1% 0.3 119 131 −0.7
16 −0.4% 0.8% 0.11 124 112 0.5
19 −0.2% −0.3% −0.3 62 50 2.7
20 7% −29% −1.2 46 59 −1.2
21 −5.5% 2.1% 0.13 84 62 2.4
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Figure II.6: Relation between ε, δ and RMSE, cont. In the figure, there is a relationship between
value of ε for a line with ’+’ and RMSE, and a relationship between a value of δ for a line with
’x’ and RMSE for the tests with ids: 13,14,15,16 from Table II.2 and Table II.3 respectively

in respect of generalization error, speed of training and testing, ability to incorporate prior
knowledge, can be used directly for regression problems.

The disadvantage of δ-SVR are ambiguous results comparing time of training for nonlinear
kernels. For some of data sets δ-SVR is slower than ε-SVR.

For future work, we plan to test δ-SVR with different parameters for shifting the data up
and down. We plan also to test δ-SVR for data sets with errors not only in output, but also in
input vectors.
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Chapter III

Margin Knowledge Per Example

III.1 Introduction to ϕ-SVC
The ϕ-SVC method is a recently proposed method of incorporating knowledge about margin
to SVC [30, 32, 34]. The ϕ-SVC optimization problem includes an additional parameter per
example in inequality constraints, on the right side of inequalities, (2). Another modification
of inequality constraints were proposed in [51]. The authors modify the margin by multiplying
the left side of the inequalities by some monotonically decreasing function of additional example
weights. The ϕ-SVC is a more general concept of weights per example with any values possible
and with different interpretation.

The ϕ-SVC method is used for incorporating margin knowledge represented by additional
parameters per training example.

Definition III.1.1 (A tractor). A tractor is defined as an example with a classification value
(1 or -1), and with the additional parameter ϕ, called a tractor parameter.

The incorporation of tractors into SVC contains two steps: a tractor example is added to a
training set with a proper classification value. Next, the modified SVC optimization problem
is used. If a training set already contain a tractor example, the first step is skipped. Now, we
will closely look at ϕ-SVC optimization problem. We are based on SVC with cost weights per
example, OP 8

OP 13.
min
~wc,bc, ~ξc

f
(
~wc, bc, ~ξc

)
= 1

2 ‖ ~wc‖2 + ~Cc · ~ξc (III.1)

subject to
yich (~xi) ≥ 1 + ϕi − ξic (III.2)

~ξ ≥ 0 (III.3)

for i ∈ {1, . . . , n}, where
~Cc � 0 (III.4)

ϕic ∈ R (III.5)

h (~xi) = ~wc · ~xi + bc . (III.6)

The new weights ~ϕ are only present in constraints. When ~ϕ = 0, the OP 13 is equivalent to
OP 8. When all ϕi are equal to some constant ϕ > −1, we will get the same decision boundary
as for ϕ = 0, when we change ~Cc to ~Cc/ (1 + ϕ).

Proof. We will prove that we get the same decision boundary when we replace 1 with 1/d, for
some d > 0, ϕi = 0. Let’s replace ξi with ξi/d and we get the inequalities yich (~xi) ≥ 1/d− ξic/d.
After multiplying by d we get yicdh (~xi) ≥ 1 − ξic. The objective function can be multiplied by
d2 and we get 1

2

∥∥∥ ~dwc
∥∥∥2

+ ~dCc · ~ξc, the inequalities ξi/d ≥ 0 can be replaced by ξi ≥ 0. So we
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get the same optimization problem as the original one with the new ~Cc = d ~Cc and with the new
decision curve dh (~x) = 0.

A functional margin for a point ~p is defined as a value y~ph (~p). A value v in functional margin
units is equal to v/ ‖~w‖. We can easily verify that a tractor parameter for ϕi ≥ 0 is a lower
bound on a distance from the tractor example to the margin measured in functional margin
units: when we omit ξi in constraints for simplicity, we can see that yih∗ (~xi) ≥ 1 +ϕi, when we
divide both sides by ‖~w‖, we get yih∗ (~xi) / ‖~w‖ ≥ 1/ ‖~w‖+ ϕi/ ‖~w‖.

Definition III.1.2 (A detractor). A detractor is a tractor with ϕi > 0.

For ϕi < 0 and when the example is lying below the margin, the absolute value of a tractor
parameter is an upper bound on a distance from the tractor example to the margin measured in
functional margin units: when we omit ξi in constraints for simplicity, we get −yih∗ (~xi) / ‖~w‖+
1/ ‖~w‖ ≤ −ϕi/ ‖~w‖. Both sides of the inequality are positives for this case.

Definition III.1.3 (An attractor). An attractor is a tractor with ϕi < 0.

Note that when we take into account ξi, tractors can incorporate imperfect prior knowledge
which is controlled by Ci parameters. Comparing loosely attractors to slack variables: attrac-
tors are constants, they are absent in objective function, whereas a sum of slack variables is
minimized.

We can also derive the equivalent optimization problem to OP 13, where ϕi weights are
present in the constraints with slack variables

OP 14.
min
~wc,bc, ~ξc

f
(
~wc, bc, ~ξc

)
= 1

2 ‖ ~wc‖2 + ~Cc · ~ξc (III.7)

subject to
yich (~xi) ≥ 1− ξic (III.8)

~ξ ≥ ϕi (III.9)

for i ∈ {1, . . . , n}.

In order to construct an efficient algorithm for the OP 13 its dual form was derived (derivation
in D.1). The final form of the dual problem is

OP 15.
max
~α

d (~α) = ~α · (1 + ~ϕ)− 1
2
~αTQ~α (III.10)

subject to
~α · ~y = 0 (III.11)

0 ≤ ~α ≤ ~C , (III.12)

where
Qij = yiyj (~xi · ~xj) (III.13)

for all i, j ∈ {1, . . . , n}.

It differs from the original SVC dual form by only ~α · ~ϕ term. In the above formulation,
similarly as for the original SVC, it is possible to introduce nonlinear decision functions by using
a kernel function instead of a scalar product. The final decision boundary has a form

h∗ (~x) =
n∑
i=1

yiα
∗
iK (~xi, ~x) + b∗ = 0 , (III.14)

where K (·, ·) is a kernel function. The KKT complementary condition is

αi (yih (~xi)− 1− ϕi + ξi) = 0 (III.15)
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Figure III.1: Interpretation of detractors as dynamic hyperspheres. In the figures, there are
example points, solutions (solid lines), support vectors (triangles and circles), tractors (circles
filled with grid pattern). In both figures, there is a detractor in (-3, 0) with ϕ = 5.0. Radii of
the detractors differ in both cases (2.2 and 1.6 respectively)
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Figure III.2: Interpretation of an attractor as a hypersphere. In the figure, there are example
points, a solution (solid line), support vectors (triangles and circles), tractors (circles filled with
grid pattern). One of the attractor is (0.5, -1.5) with ϕ = −1.0.

(Ci − αi) ξi = 0 . (III.16)

We can find ξi parameters from the solution of the dual form as following. When

yich
∗ (~xi) ≥ 1 + ϕi , (III.17)

then ξic = 0, else
ξic = 1 + ϕi − yich (~xi) . (III.18)

III.2 Interpretation of Tractors as Dynamic Hyperspheres

A detractor example ~p can be interpreted as a hypersphere with a radius equals to ϕp in func-
tional margin units and therefore this is a dynamic hypersphere with a variable radius which
depends on a decision function. The hypersphere must not intersect the margin boundary (in
more than one point) yph (~x) = 1. A value of the radius is represented in functional margin units
and hence its absolute value varies among solution candidates. For the two solution candidates
h1 (~x) = 0 and h2 (~x) = 0, where h2 (~x) = ah1 (~x) and a 6= 0 (both hyperplanes have the same
geometric locations), the hyperspheres are respectively S1 (~p, r), and S2 (~p, r/a) (Fig. III.1).

An attractor example ~p can be interpreted as a hypersphere with a radius equals to |ϕp| in
functional margin units with a center in the p-th point that must intersect a margin boundary
yih (~x) = 1, Fig. III.2.
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III.3 An Efficient Solution of ϕ-SVC

In order to solve OP 15, a decomposition method similar to SMO [36] which solves the original
SVC dual optimization problem was derived. For two chosen parameters i1 and i2 the solution
without clipping is

αnew
i2 = αi2 + yi2 (Ei1 − Ei2)

κ
, (III.19)

where κ = Ki1i1 +Ki2i2 − 2Ki1i2 and

Ei =
n∑
j=1

yjαjKij − yi − yiϕi . (III.20)

After that, αi2 is clipped in the same way as for SMO, but with variable weights Ci (derivation
in D.2)

U ≤ αclipped
i2

≤ V , (III.21)

where for y1 6= y2:
U = max

(
0, αold

i2 − α
old
i1

)
(III.22)

V = min
(
Ci2 , Ci1 − αold

i1 + αold
i2

)
(III.23)

for y1 = y2:
U = max

(
0, αold

i1 + αold
i2 − Ci1

)
(III.24)

V = min
(
Ci2 , α

old
i1 + αold

i2

)
. (III.25)

The parameter αi1 is
αnew
i1 = γ − yi1yi2α

clipped
i2

, (III.26)

where
γ = αold

i1 + yi1yi2α
old
i2 . (III.27)

Based on the KKT complementary condition, it is possible to derive equations for the SVC
heuristic and the SVC stopping criteria. After incorporating weights ~ϕ, a heuristic and stopping
criteria are almost the same, with the one difference, that values of Ei are computed as stated
in (III.20).

III.4 New Types of Support Vectors

The i-th example is a support vector, when α∗i 6= 0. From KKT (III.15),(III.16) we can conclude
which examples could be support vectors. In the original SVC, only the example which lies on the
optimal margin boundaries (yih∗ (~xi) = 1) or below optimal margin boundaries (yih∗ (~xi) < 1)
could be a support vector. In ϕ-SVC, also the example fulfilling ϕi > 0 and lying above margin
boundaries (yih∗ (~xi) > 1) could be a support vector. Such example is called a detractor support
vector, Fig. III.1. An output model is defined based on support vectors. Introducing the new
type of support vectors leads to richer models, where additional examples lying above optimal
margin boundaries could participate in defining a decision function.

Attractors could lead to the examples which lie below the margin and are not support vectors.
Moreover, attractors could lead to the new type of support vectors – which have slack variables
equal to zero and do not lie on the margin.

The better flexibility of ϕ-SVC in choosing support vectors suggests that we can build models
with fewer support vectors for the similar generalization performance.
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III.5 ε-SVR Reformulation as ϕ-SVC

It was shown recently that a reformulation of ε-SVR is a special case of ϕ-SVC [34]. The
similar reformulation was implemented in LibSVM [3] for solving ordinal classification problems –
without prior knowledge, and ε-SVR. The consequence of this reformulation is that we can apply
all the applications for generalized SVC also for ε-SVR. These are manipulating of the regression
function proposed as a manipulation of the decision curve for classification problems in [30]
and creating improved reduced models by removing support vectors proposed for classification
problems in [32]. The former was also investigated for δ-SVR recently proposed [33].

Here we present a reformulation of the OP 7. Every regression training example is duplicated,
Fig. III.3. Every original training example gets 1 class, and the duplicated training example
gets -1 class and therefore we get

OP 16.

min
~wc,bc, ~ξc

f
(
~wc, bc, ~ξc

)
= 1

2 ‖ ~wc‖
2 + Cc

2n∑
i=1

ξic (III.28)

subject to
yich (~xi) ≥ 1− ξic + ϕi (III.29)

~ξc ≥ 0 (III.30)

for i ∈ {1, . . . , 2n}, where
h (~xi) = ~wc · ~xi + bc (III.31)

and
ϕi = yicy

i
r − ε− 1 . (III.32)

The OP 16 is a special case of OP 13. Instead of using a decision curve of OP 16 we use a
regression function

2n∑
i=1

yicα
∗
iK (~xi, ~x) + b∗c = 0 → g∗ (~x) =

2n∑
i=1

yicα
∗
iK (~xi, ~x) + b∗c . (III.33)

In a typical scenario ϕi < 0, because ε is close to 0 and yir is less than 1. We can notice
the following property of the OP 16. Because every training example is duplicated, for every
possible solution, n training examples will be always incorrectly classified except those lying on a
classification decision boundary, Fig. III.3. An efficient solution of the OP 16 based on Sequential
Minimal Optimization [36] is the same as described in [30, 32]. The KKT complementary
condition for ε-SVR is the same as for ϕ-SVC after reformulation.

III.6 Using Margin Knowledge with ε-SVR

The ε-SVR can be reformulated as ϕ-SVC. We can additionally modify margin weights for
incorporating margin knowledge. There are two options of incorporation available, either we
can modify ϕp and ϕp+n for some vector p after transforming the problem to ϕ-SVC or we can
modify εpu or εpd before the transformation. In the first option, the ϕp and ϕp+n weights are
already set according to (III.32). So adding margin knowledge means the manipulation of these
weights. In the second option, εpu or εpd weights are set to some ε value for standard ε-SVR.
Both approached are equivalent, in the sense that modification of εpu and εpd is equivalent to the
modification

∆ϕp = −∆εpd , (III.34)

∆ϕp+n = −∆εpu . (III.35)

35



III.7 Using Margin Knowledge with δ-SVR Margin Knowledge Per Example

-6

-3

0

3

6

-4 -2 0 2 4 6

-6

-3

0

3

6

-4 -2 0 2 4 6

-6

-3

0

3

6

-4 -2 0 2 4 6

-6

-3

0

3

6

-4 -2 0 2 4 6

-6

-3

0

3

6

-4 -2 0 2 4 6

-6

-3

0

3

6

-4 -2 0 2 4 6

-6

-3

0

3

6

-4 -2 0 2 4 6

-6

-3

0

3

6

-4 -2 0 2 4 6

-6

-3

0

3

6

-4 -2 0 2 4 6

-6

-3

0

3

6

-4 -2 0 2 4 6

-6

-3

0

3

6

-4 -2 0 2 4 6

-6

-3

0

3

6

-4 -2 0 2 4 6

-6

-3

0

3

6

-4 -2 0 2 4 6

-6

-3

0

3

6

-4 -2 0 2 4 6

-6

-3

0

3

6

-4 -2 0 2 4 6

-6

-3

0

3

6

-4 -2 0 2 4 6
Figure III.3: The idea of reformulating ε-SVR as ϕ-SVC. In the left figure, there are regression
data points and a solution (a plane). In the right figure, there is a transformed problem,
classification data points, support vectors (triangles and circles), tractors (circles filled with grid
pattern), a solution (a solid line), margins (dashed lines)
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Figure III.4: Direct curve manipulation for SVC. In the figures, there are example points,
support vectors (triangles and circles), tractors (circles filled with grid pattern), solutions (solid
lines), margins (dashed lines). In the right figure, there is a tractor which causes lowering the
solution from the left figure

III.7 Using Margin Knowledge with δ-SVR

The δ-SVR is transformed to the classification problem, so we can use ϕ-SVC instead of standard
SVC for incorporating margin knowledge. From some point p, we set ϕp for the original example,
and ϕp+n for the duplicated one.

III.8 Changing the Output Curve

After modification of ϕi weights, either the output curve stays the same, or it is changed. For
example, let’s assume that we modify only a one example ~p and ϕ~p is equal to zero before the
modification. When y~ph∗ (~p) > 1, then setting 0 < ϕ~p ≤ y~ph

∗ (~p) − 1 will not affect a solution.
When we set ϕ~p > y~ph

∗ (~p) − 1, the solution will be different, but not necessarily a decision
boundary. Particularly, setting ϕ~p > 0 can increase a slack variable, when a value of C~p is small,
or it can cause decrease of the margin size (decreased ‖ ~wc‖), and in both cases the solution
can stay the same. We can see the example of changed output curve for ϕ-SVC, Fig. III.4, for
δ-SVR, Fig. III.5, for ε-SVR, Fig. III.6.
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Figure III.5: Direct curve manipulation for δ-SVR. In the left figure, there are regression data
points, a solution (a solid line). In the right figure, there is a transformed problem: classification
data points, support vectors (triangles and circles), tractors (circles filled with grid pattern), a
solution (a solid line), margins (dashed lines). In the right figure, there is also a tractor which
causes changing the solution from the left figure
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Figure III.6: Direct curve manipulation for ε-SVR. In both figures, there are regression data
points, solutions (solid lines). In the right figure, there is a tractor which causes changing the
solution from the left figure (a dotted line)
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Let’s now analyze in details changing the output curve. First consider changing the C
parameter. We can see that for OP 8, if we increase value of Cpc for some point p for which
ξpc = 0, then the solution remains the same. Consider now OP 13 and the solution with all
ϕi = 0. If we want to add a detractor, we have to set ϕp > 0 for some example p. After adding
a detractor for which

ϕp ≤ ypch (xpc)− 1 + ξpc , (III.36)

the solution remains the same, in the other case variables ~w, ~ξ, b will be adjusted, but the decision
curve can stay the same. It will stay the same in the following cases:

1. The ξpc is only adjusted, to

ξpcnew = ϕp − ypch ( ~xp) + 1 . (III.37)

The objective function will raise by

∆f = Cp∆ξpc . (III.38)

2. The h (~xc) is modified
hcnew (~xc) = ch (~xc) , (III.39)

where c > 1. The objective function will raise by

∆f = 1
2 ‖~w‖

2
(
c2 − 1

)
. (III.40)

The modification parameter c is set in a way that the following equation is fulfilled

cypch ( ~xp) = 1− ξpc + ϕp . (III.41)

Note that in this case other non-zero ξic values have to be modified

ξioldc = 1− yich (~xi) (III.42)

ξinewc = 1− cyich (~xi) (III.43)

∆ξic = yich (~xi) (1− c) . (III.44)

For misclassified examples the change of an objective function will be positive, otherwise
negative

∆f = 1
2 ‖~w‖

2
(
c2 − 1

)
+

n∑
i=1,i 6=p

Cic∆ξic . (III.45)

3. Both above changes are present simultaneously. The objective function will be changed by

∆f = 1
2 ‖~w‖

2
(
c2 − 1

)
+ Cpc∆ξpc +

n∑
i=1,i 6=p

Cic∆ξic . (III.46)

Changing the decision curve is possible, especially when ∆f is high, because other solutions
(which are able to change the decision curve) are more likely to have a better value of f . We
can see that we can increase a chance for changing the decision boundary by increasing the
parameter Cpc .

III.9 Incorporating Linear Dependency of Function Values

Another example of application for tractors is the incorporation of the additional constraint in
the form of a constant value of linear dependency of function values, that the solution must
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fulfill, for regression:
s∑
i=1

sig
(
~di
)

= e , (III.47)

where si are some parameters, for which
∑s
i=1 si 6= 0, di are some points, s is the number of

points di, e is a parameter, g is defined in (I.37), and for classification:

s∑
i=1

sih
(
~di
)

= e . (III.48)

where si are some parameters, for which
∑s
i=1 si 6= 0, di are some points, s is the number of di

points, e is a parameter.

We will show how to incorporate this constraint to ϕ-SVC, δ-SVR, and ε-SVR. Tractors are
used in incorporation of this constraint to ϕ-SVC and ε-SVR.

III.9.1 Incorporating Linear Dependency of Function Values to ϕ-SVC

We will incorporate (III.48) to OP 13. After reformulation

s∑
i=1

si ~wc · ~di + b
s∑
i=1

si = e (III.49)

b = 1∑s
i=1 si

(
e−

s∑
i=1

si ~wc · ~di

)
. (III.50)

Now we can substitute b to h (~x) and we get

h (~x) = ~wc · ~x+ 1∑s
i=1 si

(
e−

s∑
i=1

si ~wc · ~di

)
(III.51)

after reformulation
h (~x) = ~wc · ~x−

1∑s
i=1 si

~wc ·
s∑
i=1

si~di + e∑s
i=1 si

. (III.52)

After substituting above to OP 13, we get the ϕ-SVC problem without the offset with the new
kernel in the form of transformation of the input vectors

~x→ ~x− 1∑s
i=1 si

s∑
i=1

si~di (III.53)

K (~x, ~y) =
(
~x− 1∑s

i=1 si

s∑
i=1

si~di

)(
~y − 1∑s

i=1 si

s∑
i=1

si~di

)
(III.54)

and tractors set as
ϕi = ϕold − yi

e∑s
i=1 si

. (III.55)

We propose also nonlinear solutions by using the following way of further kernelization

K (~x, ~y) = Ko (~x, ~y)− 1∑s
i=1 si

s∑
i=1

siKo

(
~x, ~di

)
− 1∑s

i=1 si

s∑
i=1

siKo

(
~y, ~di

)
(III.56)

+ 1
(
∑s
i=1 si)

2

s∑
i=1

s∑
j=1

sisjKo

(
~di, ~dj

)
(III.57)
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This kernel is used only for solving the optimization problem. Now we derive the solution,
because

~wc =
n∑
j=1

αjy
j
c

(
~xj −

1∑s
i=1 si

s∑
i=1

si~di

)
(III.58)

we get

h (~x) = ~wc · ~x+ b =
n∑
j=1

αjy
j
c

(
~xj −

1∑s
i=1 si

s∑
i=1

si~di

)
· ~x+ b (III.59)

=
n∑
j=1

αjy
j
c ~xj · ~x−

1∑s
i=1 si

n∑
j=1

s∑
i=1

αjy
j
csi

~di · ~x+ b (III.60)

and after adding internal kernels we get

h (~x) =
n∑
j=1

αjy
j
cKo ( ~xj , ~x)− 1∑s

i=1 si

n∑
j=1

s∑
i=1

αjy
j
csiKo

(
~di, ~x

)
+ b (III.61)

when b is computed as

b = 1∑s
i=1 si

e− s∑
i=1

si

n∑
j=1

αjy
j
c

(
~xj −

1∑s
i=1 si

s∑
k=1

sk ~dk

)
· ~di

 (III.62)

= 1∑s
i=1 si

e− s∑
i=1

si

n∑
j=1

αjy
j
cKo

(
~xj , ~di

)
+ 1∑s

i=1 si

s∑
i=1

si

n∑
j=1

s∑
k=1

αjy
j
cskKo

(
~dk, ~di

) (III.63)

So we can interpret a solution as a standard SVM solution with a non-symmetrical translated
kernel, where only training examples are translated, and with b computed as above.

III.9.2 Incorporating Linear Dependency of Function Values to δ-SVR

We will incorporate (III.47) to δ-SVR. We assume that we use special kernels developed for
δ-SVR. For δ-SVR the condition becomes

s∑
i=1

si
− ~wred · ~di,red − bc

wm+1
c

= e , (III.64)

After transformation
ewm+1

c +
s∑
i=1

si ~wred · ~di,red +
s∑
i=1

sibc = 0 (III.65)

bc = 1∑s
i=1 si

(
−ewm+1

c −
s∑
i=1

si ~wred · ~di,red

)
(III.66)

Substituting it to h (~x) we get

h (~x) = ~wc · ~x+ 1∑s
i=1 si

(
−ewm+1

c −
s∑
i=1

si ~wred · ~di,red

)
(III.67)

h (~x) = ~wred · ~xred + wm+1
c xm+1 + 1∑s

i=1 si

(
−ewm+1

c −
s∑
i=1

si ~wred · ~di,red

)
(III.68)

h (~x) = ~wred ·
(
~xred −

1∑s
i=1 si

s∑
i=1

si ~di,red

)
+ wm+1

c

(
xm+1 −

e∑s
i=1 si

)
(III.69)
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After substituting above to OP 13, we get the ϕ-SVC problem without the offset with the new
kernel in the form

K (~x, ~y) =
(
~xred −

1∑s
i=1 si

s∑
i=1

si ~di,red

)(
~yred −

1∑s
i=1 si

s∑
i=1

si ~di,red

)
(III.70)

+
(
xm+1 −

e∑s
i=1 si

)(
ym+1 −

e∑s
i=1 si

)
(III.71)

Then

K (~x, ~y) = ~xred · ~yred −
1∑s
i=1 si

s∑
i=1

si ~di,red · ~xred −
1∑s
i=1 si

s∑
i=1

si ~di,red · ~yred (III.72)

+ 1
(
∑s
i=1 si)

2

s∑
i=1

s∑
j=1

sisj ~di,red · ~dj,red + xm+1ym+1 − xm+1
e∑s
i=1 si

− ym+1
e∑s
i=1 si

(III.73)

+ e2

(
∑s
i=1 si)

2 (III.74)

We propose also nonlinear solutions by using the following way of further kernelization

K (~x, ~y) = Ko ( ~xred, ~yred)− 1∑s
i=1 si

s∑
i=1

siKo

(
~di,red, ~xred

)
(III.75)

− 1∑s
i=1 si

s∑
i=1

siKo

(
~di,red, ~yred

)
+ 1

(
∑s
i=1 si)

2

s∑
i=1

s∑
j=1

sisjKo

(
~di,red, ~dj,red

)
(III.76)

+ xm+1ym+1 − xm+1
e∑s
i=1 si

− ym+1
e∑s
i=1 si

+ e2

(
∑s
i=1 si)

2 . (III.77)

This kernel is used only for solving the optimization problem. So solving δ-SVR with the
additional constraint leads to SVC optimization problem without the offset and with a special
kernel presented above. Now we derive the solution

h (~x) = ~wc · ~x+ bc =
2n∑
j=1

αjy
j
c

(
~xj,red −

1∑s
i=1 si

s∑
i=1

si ~di,red

)
· ~xred (III.78)

+
2n∑
j=1

αjy
j
c

(
xm+1
j − e∑s

i=1 si

)
xm+1 + bc (III.79)

with internal kernels

h (~x) =
2n∑
j=1

αjy
j
c

(
Ko ( ~xj,red, ~xred)− 1∑s

i=1 si

s∑
i=1

siKo

(
~di,red, ~xred

))
(III.80)

+
2n∑
j=1

αjy
j
c

(
xm+1
j − e∑s

i=1 si

)
xm+1 + bc (III.81)

where bc is computed as

bc = 1∑s
i=1 si

−e 2n∑
j=1

αjy
j
c

(
xm+1
j − e∑s

i=1 si

) (III.82)

− 1∑s
i=1 si

 s∑
i=1

si

2n∑
j=1

αjy
j
c

(
~xj,red −

1∑s
i=1 si

s∑
k=1

sk ~dk,red

)
· ~di,red

 (III.83)

41



III.10 Incorporating Inequalities with Function Values Margin Knowledge Per Example

= − 1∑s
i=1 si

e
2n∑
j=1

αjy
j
c

(
xm+1
j − e∑s

i=1 si

)
− 1∑s

i=1 si

s∑
i=1

si

2n∑
j=1

αjy
j
cKo

(
~xj,red, ~di,red

)
(III.84)

+ 1∑s
i=1 si

s∑
i=1

si

2n∑
j=1

αjy
j
c

1∑s
i=1 si

s∑
k=1

skKo

(
~dk,red, ~di,red

)
(III.85)

where ~xred = (x1, . . . , xm), ~yred = (y1, . . . , ym). So we can interpret a solution as a standard
δ-SVR solution with a non-symmetrical kernel, where only training examples are translated, and
with b computed as above.

III.9.3 Incorporating the Linear Dependency of Function Values to ε-SVR

We will incorporate to OP 7 (III.47). Because ε-SVR is a special case of ϕ-SVC, and we have
derived already the incorporation for ϕ-SVC, for ε-SVR we set the following weights

ϕi = yicy
i
r − ε− 1− yic

e∑s
i=1 si

(III.86)

for i ∈ {1, . . . , 2n}. We also use input space transformation. We use ϕ-SVC without b.

III.10 Incorporating Inequalities with Function Values

Another example of application for tractors is the incorporation of the additional constraints in
the form of inequalities with function values for training points for regression case:

g (~xi) ≥ ai (III.87)

for i = 1..n, where ai are some parameters, g is defined in (I.37). In order not to introduce new
optimization problems, we propose soft incorporation by changing tractor values. For ε-SVR, it
leads to the modification of εiu and εid values:

εid,new = max
(
0,min

(
εid,old, y

i
r − ai

))
(III.88)

εiu,new = min
(
εiu,old, ε

i
d,new

)
(III.89)

For δ-SVR we modify δiu and δid parameters:

δid,new = max
(
0,min

(
δid,old, y

i
r − ai

))
(III.90)

δiu,new = min
(
δiu,old, δ

i
d,new

)
(III.91)

Although we do not modify directly tractor parameters, they are modified indirectly for ε-SVR,
because changing εi leads to changing ϕi. Changing δi can be interpreted as changing εi. Similar
incorporation scheme exists for

g (~xi) ≤ ai . (III.92)

III.11 Reduce a Model with ϕ-SVC

Various methods for reducing the complexity of the output model were widely investigated [17].
In particular, the reduction by removing support vectors was also analyzed in [15] for regression
problems.

Sparse models have an advantage of faster post-processing such as testing new examples. For
some data, SVC return many support vectors. Consider highly linear nonseparable distribution
of data. Many training vectors would have ξi > 0. A general idea of constructing even more
sparse solutions than SVC is to find a solution spanned on the given number of support vectors
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Figure III.7: The idea of reduced SVC. In the figures, there are example points after reducing,
support vectors (triangles and circles), solutions (solid lines), original solutions before reduction
(dotted lines), margins (dashed lines). In the right figure, there are tractors (circles filled with
grid pattern)

as close to the original SVC solution as possible. The most representative method for this idea
is presented in [50]. The another example for this group are reduced support vector machines
(RSVM) which randomly selects support vectors to a reduced set [14, 27]. The alternative
approach is to replace SVM with another training method which is designed for returning sparse
solutions. The most representative method for this group is a greedy approach which adds basis
functions to the solution until no progress in optimizing a cost function is made [17].

Our proposed approach [32, 34] is conceptually closer to the first idea. After SVM is trained,
we remove randomly selected support vectors, and run again SVM on a reduced training set
with incorporated prior knowledge about the original solution, Fig. III.7, Fig. III.8, Fig. III.9. A
concept of randomly removing support vectors was presented in [15]. For highly small number
of support vectors removing some of them would definitely lead to decreasing generalization
performance. The proposed method generates reduced models from the original full model with
incorporated prior knowledge in the form of tractors. The procedure of generating knowledge in
the form of tractors is as following. First, tractors are automatically generated from an existing
solution by setting

ϕi = yih
∗ (~xi)− 1 (III.93)

for all training examples. For ε-SVR, instead of modifying ϕi weights, we can alternatively
modify εiu and εid weights:

εiu = yir − g∗ (~xi) ,

εid = g∗ (~xi)− yir .

After that, a reduced model is generated by removing a bunch of data vectors – randomly
selected data vectors, with maximal removal ratio of p% off all training vectors, where p is a
configurable parameter. Finally, we run ϕ-SVC with reduced data.

III.12 Generation of Prior Knowledge

When prior knowledge comes from the external source, we can directly use it for comparison of
accuracy of the models. Otherwise, we have to generate prior knowledge from the available data.
Authors in [25] divide a data set to two parts (about 20% and 80%), and they generate manually
prior knowledge from the first, and use it in the second part. We proposed a slightly modified
procedure. In order to generate meaningful prior knowledge, we generate the knowledge from
the whole training set, and then we create data for the models to compare, by removing some
of support vectors. The procedure is as follows:

1. Find a solution of SVM problem without prior knowledge.
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Figure III.8: The idea of reduced δ-SVR. In the figures, there are example points after reducing,
support vectors (triangles and circles), solutions (solid lines), original solutions before reduction
(dotted lines), margins (dashed lines). In the right figure, there are tractors (circles filled with
grid pattern)
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Table III.1: Performance of ϕ-SVC for reduced models for synthetic data. Column descriptions:
id – id of the test, a function – a function used for generating data y1 =

∑dim−1
i=1 xi, y4, y5 =(∑dim−1

i=1 xi
)kerP

, y6 = 0.5
∑dim−1
i=1 sin 10xi + 0.5, ker – a kernel with a kernel parameter (for a

polynomial kernel it is a dimension, for the RBF kernel it is σ), idRef – a reference to the test,
te12M – a percent average difference in correctly classified examples for testing data, if greater
than 0 than a method with margin knowledge is better, s1 – the average number of support
vectors for a method without margin knowledge, s2 – the average number of support vectors
for a method with margin knowledge

id function ker

0 y1 denseLinear 0.0
1 y2 = 3y1 denseLinear 0.0
2 y3 = 1/3y1 denseLinear 0.0
3 y4 densePolynomial 5.0
4 y5 denseRBF 0.25
5 y6 denseRBF 0.25

idRef te12M s1 s2

0 2.4 23 19
1 3.22 23 19
2 −0.63 24 21
3 1.19 23 16
4 0.92 25 20
5 0.43 26 25

2. Extract prior knowledge from the solution.

3. Remove randomly p% of input data.

4. Find the solution with and without prior knowledge on reduced data set.

III.13 Experiments
In experiments, we show that the reduced models with margin knowledge have better perfor-
mance than without the additional knowledge. The first method does not use margin knowledge
in reduced models, the second one use the additional knowledge. In the first experiment, we
set arbitrarily p = 70. Note that for comparison purposes a reduced model is the same for
both methods. We use the author implementation of SVC for both methods. In the second
experiment, we show that the proposed method has better performance for variable p.

For all data sets, every feature is scaled linearly to [0, 1] including an output. For variable
parameters like the C, σ for the RBF kernel, ϕ for δ-SVR, and ε for ε-SVR we use a grid
search method for finding best values. The number of values searched by the grid method is a
trade-off between an accuracy and a speed of simulations. Note that for particular data set it is
possible to use more accurate grid searches than for massive tests with the multiple number of
simulations.

III.13.1 Synthetic Data Tests

We compare both methods on data generated from particular functions with added Gaussian
noise for output values. We perform tests with a linear kernel on linear functions, with a poly-
nomial kernel on the polynomial function, with the RBF kernel on the sine function. The tests
with results are presented in Table III.1. The method with margin knowledge has better per-
formance for every kernel, the number of support vectors is comparable. A testing performance
gain varies from 0% to 51%.

III.13.2 Real World Data Tests

The real world data sets were taken from the LibSVM site [3] [22] except stock price data. The
stock price data consist of monthly prices of the DJIA index from 1898 up to 2010. We generated
the training set as follows: for every month the output value is a growth/fall comparing to the
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Table III.2: Performance of ϕ-SVC for reduced models for real world data. Column descriptions:
id – id of the test, dn – a data set, ker – a kernel with a kernel parameter (for a polynomial
kernel it is a dimension, for the RBF kernel it is σ), idRef – a reference to the test, te12M –
a percent average difference in correctly classified examples for testing data, if greater than 0
than a method with margin knowledge is better, s1 – the average number of support vectors for
a method without margin knowledge, s2 – the average number of support vectors for a method
with margin knowledge

id dn ker

0 a1aAll denseLinear 0.0
1 a1aAll densePolynomial 5.0
2 a1aAll denseRBF 0.00813
3 breast-cancer denseLinear 0.0
4 breast-cancer densePolynomial 3.0
5 breast-cancer denseRBF 0.1
6 diabetes denseLinear 0.0
7 diabetes densePolynomial 3.0
8 diabetes denseRBF 0.125
9 djia denseLinear 0.0
10 djia densePolynomial 5.0
11 djia denseRBF 0.08333

idRef te12M s1 s2

0 15.47 16 16
1 3.79 11 25
2 0.0 27 27
3 14.26 7 8
4 24.71 5 6
5 3.61 24 25
6 9.41 20 17
7 7.16 16 15
8 0.42 26 26
9 0.67 23 16
10 1.26 22 16
11 1.52 29 28

next month. Every feature i is a percent price change between the month and the i-th previous
month. In every simulation, training data are randomly chosen, the remaining examples become
test data. The tests with results are presented in Table III.2. The method with margin knowledge
has better performance for all data sets, for all kernels with similar number of support vectors.
The testing performance varies from 0% to 27%. For the DJIA data set, results are comparable.

III.13.3 Variable p

In the second experiment, we show that for variable p the second method has better performance.
The example results for the first test case from synthetic tests are depicted in Fig. III.10,
Fig. III.11.

III.13.4 Experiments for Regression

In the first experiment, we show that the reduced models with margin knowledge have better
generalization performance than without that knowledge for various p. The first method does
not use margin knowledge in reduced models, the second one use it. In the third experiment,
we show that the reduced models have much better time of testing new examples which mainly
depends on the number of support vectors. Note that for purposes of fair comparison training
data of a reduced model is the same for both methods. We use the author implementation of
reformulation of the ε-SVR for both methods.

For all data sets, every feature is scaled linearly to [0, 1] including an output. For ε we use
a grid search method for finding the best values.

Comparing generalization performance of reduced model.

The synthetic samples were generated from particular functions with added Gaussian noise for
output values. The real world data sets were taken from the LibSVM site [3][22] except stock
price data. They originally come from UCI Machine Learning Repository and StatLib DataSets
Archive. The stock price data consist of monthly prices of the DJIA index from 1898 up to 2010.
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Figure III.10: Comparison of two methods of removing support vectors for the test cases from
Table III.2. On x axis there is a number of support vectors, on y axis there is a percent difference
in misclassified testing examples. The line with ’+’ points represents a random removing method,
while the line with ’x’ points represents proposed removing method with margin knowledge
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Figure III.11: Comparison of two methods of removing support vectors for the test cases from
from Table III.2, cont. On x axis there is a number of support vectors, on y axis there is
a percent difference in misclassified testing examples. The line with ’+’ points represents a
random removing method, while the line with ’x’ points represents proposed removing method
with margin knowledge
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Table III.3: Performance of ϕ-SVC for reduced models for synthetic data, for regression. Column
descriptions: id – id of the test, a function – a function used for generating data y1 =

∑dim−1
i=1 xi,

y4, y5 =
(∑dim−1

i=1 xi
)kerP

, y6 = 0.5
∑dim−1
i=1 sin 10xi + 0.5, ker – a kernel with a kernel parameter

(for a polynomial kernel it is a dimension, for the RBF kernel it is σ), idRef – a reference to
the test, te12M – a percent average difference in MSE for testing data, if greater than 0 than
a method with margin knowledge is better, s1 – the average number of support vectors for a
method without margin knowledge, s2 – the average number of support vectors for a method
with margin knowledge

id function ker

0 y1 denseLinear 0.0
1 y2 densePolynomial 5.0
2 y3 denseRBF 0.25

idRef te12M s1 s2

0 50.05 11 20
1 0.98 42 52
2 4.6 41 54

We generated the sample data set as follows: for every month the output value is a growth/fall
comparing to the next month. Every feature i is a percent price change between the month and
the i-th previous month. In every simulation, training data are randomly chosen, the remaining
examples become test data. For p = 70, C = 0.1 the method with margin knowledge has better
performance in all tests with similar number of support vectors (columns s1 and s2 ), Table III.3,
Table III.4. The testing performance improvement varies from 0% to 68%. For variable p the
proposed method is also superior, example results for the cadata1 test are depicted in Fig. III.12,
Fig. III.13.

Comparing testing speed performance of reduced model.

Testing speed of new examples depends mainly on the number of support vectors. With fewer
support vectors we achieve testing time reduction.

III.14 Summary
In this thesis, we analyzed applicability of margin knowledge per example incorporated to SVM
for lowering generalization error of reduced models. The method was tested for SVM classifier,
ε-SVR and δ-SVR. Experiments on real world data sets show smaller generalization error for
reduced models with margin knowledge. A potential list of applications for margin knowledge is
much broader. In future research, we plan to investigate possibility to create margin knowledge
by experts and to apply margin knowledge for time series data. Moreover, we plan to use margin
knowledge for combining SVM classifiers with each other in order to decrease a generalization
error.
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Table III.4: Performance of ϕ-SVC for reduced models for real world data, for regression.
Column descriptions: id – id of the test, a function – a function used for generating data
y1 =

∑dim−1
i=1 xi, y4, y5 =

(∑dim−1
i=1 xi

)kerP
, y6 = 0.5

∑dim−1
i=1 sin 10xi + 0.5, ker – a kernel with a

kernel parameter (for a polynomial kernel it is a dimension, for the RBF kernel it is σ), idRef –
a reference to the test, te12M – a percent average difference in MSE for testing data, if greater
than 0 than a method with margin knowledge is better, s1 – the average number of support
vectors for a method without margin knowledge, s2 – the average number of support vectors
for a method with margin knowledge

id dn ker

0 abalone denseLinear 0.0
1 abalone densePolynomial 5.0
2 abalone denseRBF 0.125
3 cadata denseLinear 0.0
4 cadata densePolynomial 5.0
5 cadata denseRBF 0.125
6 djia denseLinear 0.0
7 djia densePolynomial 5.0
8 djia denseRBF 0.1
9 housing denseLinear 0.0
10 housing densePolynomial 5.0
11 housing denseRBF 0.077

idRef te12M s1 s2

0 11.39 12 30
1 34.86 14 48
2 11.11 18 53
3 14.08 25 47
4 16.38 26 52
5 11.41 34 53
6 5.81 9 26
7 34.16 13 48
8 0.2 8 50
9 19.47 17 29
10 18.39 19 53
11 1.33 30 53
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Figure III.12: Comparison of two methods of removing support vectors for the test cases from
Table III.4. On x axis there is a number of support vectors, on y axis there is a percent difference
in misclassified testing examples. The line with ’+’ points represents a random removing method,
while the line with ’x’ points represents proposed removing method with margin knowledge
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Figure III.13: Comparison of two methods of removing support vectors for the test cases from
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with margin knowledge
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Chapter IV

Implementation Techniques Based
on KKT Conditions

One of the category of methods used for solving OP 3 are subset selection methods. In every
iteration only a few number of Lagrange multipliers are optimized. The special case is SMO
method proposed in [36] which solves 2-parameter subproblems analytically in every iteration.
For subproblems with more than 2 parameters, general quadratic programming solvers are used.
We propose using SMO for solving subproblems with more than 2 parameters. The advantage
of such solver is a simpler method without external quadratic programming solvers.

The important part of subset selection methods is strategy for choosing parameters in every
iteration. The most popular strategy is based on KKT criterion. We propose a strategy which
computes a value of cost function in every iteration for a view alternative pairs of parameters.
We choose a pair for which we achieve the biggest decrease of the cost function. The advantage
of this strategy is the decreased number of iterations and possibility to effective parallelization
of the algorithm.

We can use all proposed method with SVC, and therefore also with δ-SVR. They also work
with ϕ-SVC, so we can use them with ε-SVR as well.

IV.1 Introduction to SMO

SMO is a well established method described in [39, 8]. In a subset selection method in every
iteration we solve the following optimization problem

OP 17.
max
~β

f2
(
~β
)

=
p∑
i=1

βi + ϕci +
n∑

i=1
i/∈P

αi + ϕi − 1
2

p∑
i=1

yciβi
p∑
j=1

ycjβjKcicj

−
p∑
i=1

yciβi
n∑

j=1
j /∈P

yjαjKcij − 1
2

n∑
i=1
i/∈P

n∑
j=1
j /∈P

yijαiαjKij

(IV.1)

subject to
p∑
i=1

yciβi +
n∑

i=1
i/∈P

yiαi = 0 (IV.2)

0 ≤ βi ≤ C (IV.3)

for i ∈ {1, 2, . . . , p}, where P = {c1, . . . , cp} is a set of indices of parameters chosen to the
working set, ci ∈ I, ci 6= cj for i 6= j, ~β is a subproblem variable vector, βi is a searched value of
ci parameter. The vector α is a previous solution of OP 15. It must fulfill the linear constraint.

SMO solves 2 parameter subproblems in every iteration step. So SMO solves a special case
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of OP 17 when p = 2. The solution is

βunc2 = αc2 + yc2 (Ec1 − Ec2)
κ

(IV.4)

β2 =


V, if βunc2 > V
βunc2 , if U ≤ βunc2 ≤ V
U, if βunc2 < U

(IV.5)

β1 = αc1 + yc1yc2 (αc2 − β2) , (IV.6)

where
Ei =

n∑
j=1

yjαjK (~xi, ~xj)− yi − yiϕi (IV.7)

for i ∈ {1, . . . , n}
κ = Kc1c1 +Kc2c2 − 2Kc1c2 (IV.8)

when yc1 6= yc2

U = max (0, αc2 − αc1) (IV.9)

V = min (C2, C1 − αc1 + αc2) (IV.10)

when yc1 = yc2

U = max (0, αc1 + αc2 − C1) (IV.11)

V = min (C2, αc1 + αc2) . (IV.12)

IV.1.1 SMO for SVM without the offset

The SMO can be defined for SVC without the offset. The difference is that the minimal number
of parameters that can be optimized in every step is just one parameter:

αnew
1 = α1 −

y1E1
K11

. (IV.13)

Then we have to bound αnew
1 :

0 ≤ αnew
1 ≤ C1 . (IV.14)

See Appendix E.2 and Appendix E.3.

IV.2 Multidimensional Heuristics

The most popular heuristic for a subset selection method is based on choosing the parameters
based on KKT conditions. We present two possible derivations of the heuristic directly from
KKT and by more insight analysis with incorporating the linear constraint to the cost function.
Multidimensional heuristic was proposed in [12]. In every step we have to choose p parameters.

IV.2.1 Optimization Conditions

. We can transform the linear constraint (IV.2) to a form

βd = −ycd

p∑
i=1
i6=d

yciβi − ycd

n∑
i=1
i/∈C

yiαi , (IV.15)

where d ∈ {1, 2, . . . , p} is an arbitrarily chosen parameter. After substituting βd to the (IV.1)
we get the following optimization subproblem
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OP 18.
max
~γ

f3 (~γ) = −ycd

p∑
i=1
i 6=d

yciγei − ycd

n∑
i=1
i/∈C

yiαi +
p∑

i=1
i6=d

γei

+
n∑

i=1
i/∈C

αi − 1
2

 p∑
i=1
i 6=d

yciγei +
n∑

i=1
i/∈C

yiαi

2

Kcdcd

+

 p∑
i=1
i 6=d

yciγei +
n∑

i=1
i/∈C

yiαi

 p∑
i=1
i 6=d

yciγeiKcdci

−1
2

p∑
i=1
i 6=d

yciγei

p∑
j=1
j 6=d

ycjγejKcicj

+

 p∑
i=1
i 6=d

yciγei +
n∑

i=1
i/∈C

yiαi

 n∑
i=1
i/∈C

yiαiKcdi

−
p∑

i=1
i 6=d

yciγei

n∑
j=1
j /∈C

yjαjKcij − 1
2

n∑
i=1
i/∈C

n∑
j=1
j /∈C

yijαiαjKij

(IV.16)

subject to
0 ≤ γei ≤ C, for i ∈ {1, 2, . . . , p} \ {d} , C > 0 (IV.17)

0 ≤ c = −ycd

p∑
i=1
i 6=d

yciγei − ycd

n∑
i=1
i/∈C

yiαi ≤ C , (IV.18)

where
~γ is a p− 1 elements variable vector,
ei = i for i < d,
ei = i− 1 for i > d,
γei is a searched value of ci parameter,
c is a searched value of cd parameter.
The vector α is a previous solution. It must fulfill the constraints from O1 problem.

The partial derivative of f3 (~γ) in the point for which γei = αci has a value

∂

∂γek

f3 (~γold) = yck
(Ecd

− Eck
) , (IV.19)

where
Ei =

n∑
j=1

yjαjKij − yi . (IV.20)

Let’s analyze conditions for optimization possibility. The first obvious necessary condition is
that one of all parameters must change its value. The remaining optimization conditions consist
of two parts. The first part consists of conditions based on fulfilling (IV.18), the second part
consists of conditions based on partial derivatives. Merging all conditions leads to the overall
optimization conditions.

(IV.18) must be fulfilled after changes, hence we can write

−αold
cd
≤ ∆αcd

= −αold
cd
− ycd

p∑
i=1
i 6=d

yciα
new
ci

−ycd

n∑
i=1
i/∈C

yiαi ≤ C − αold
cd

.
(IV.21)

After substituting

αold
cd

= −ycd

p∑
i=1
i6=d

yciα
old
ci
− ycd

n∑
i=1
i/∈C

yiαi (IV.22)
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we get the following condition

− αold
cd
≤ ∆αcd

= −ycd

p∑
i=1
i6=d

yci∆αci ≤ C − αold
cd

. (IV.23)

Theorem IV.2.1 (Necessary optimization conditions based on fulfilling (IV.18)). If the condi-
tion (IV.23) is fulfilled, then there exist two parameters ci, where i ∈ {1, . . . , p}, which belong to
the opposite groups G1 and G2 defined as

G1 := {i ∈ {1, 2, . . . , n} : (yi = 1 ∧ αi = 0)
∨ (yi = −1 ∧ αi = C) ∨ (0 < αi < C)}
G2 := {i ∈ {1, 2, . . . , n} : (yi = −1 ∧ αi = 0)
∨ (yi = 1 ∧ αi = C) ∨ (0 < αi < C)} .

(IV.24)

Note that nonbound parameters are included in both groups.

Proof. We prove that, if all parameters belong to only one group G1 or G2, then the condition
(IV.23) will not be fulfilled. We choose parameters belong to the G1 group. The proof for G2
group is similar. The set of chosen parameters does not contain any nonbound parameters,
because they belong to the both groups. If all ci parameters for i ∈ {1, 2, . . . , p} \ {d} does not
change, then

p∑
i=1
i6=d

yci∆αci = 0 and therefore ∆αcd
= 0; so the set of all parameters ci does not

change what cannot be true. Otherwise the following holds:
p∑

i=1
i 6=d

yci∆αci > 0. If ycd
= 1, then

∆αcd
< 0 and αold

cd
= 0. The condition (IV.23) becomes 0 ≤ ∆αcd

≤ C, what cannot be true. If
ycd

= −1, then ∆αcd
> 0 and αold

cd
= C. The condition (IV.23) becomes −C ≤ ∆αcd

≤ 0 what
cannot be true.

Theorem IV.2.2 (Sufficient optimization conditions based on fulfilling (IV.18)). If there exist
two parameters ci, where i ∈ {1, . . . , p}, which belong to the opposite groups G1 and G2, then
condition (IV.23) is fulfilled for some parameter changes.

Proof. If none of chosen two parameters (ca from G1 group and cb from G2 group) is cd pa-
rameter, then we can set ∆αca and ∆αcb

to the same values or with inverse signs, in the way
that ∆αcd

= 0 so (IV.23) is fulfilled. If the chosen parameters are cd parameter from G1 group
and cb parameter from G2 group, then when we set all remaining parameter changes to zero
the following can hold:

p∑
i=1
i 6=d

yci∆αci < 0. If ycd
= 1, then ∆αcd

> 0. If αold
cd

= 0, then condition

(IV.23) is obviously fulfilled. If 0 < αold
cd

< C, then condition (IV.23) is fulfilled, when ∆αcb

is set to close enough to zero value. If ycd
= −1, then ∆αcd

< 0. If αold
cd

= C, then condition
(IV.23) is obviously fulfilled. If 0 < αold

cd
< C, then condition (IV.23) is fulfilled, when ∆αcb

is
set to close enough to zero value.

Theorem IV.2.3 (Necessary optimization conditions based on partial derivatives). If optimiza-
tion is possible based on partial derivatives, then one of the partial derivatives of the function f3
must fulfill the following condition

f3(~γ)
γek

> 0 when αck
= 0

f3(~γ)
γek

< 0 when αck
= C

f3(~γ)
γek
6= 0 when 0 < αck

< C .

(IV.25)

Proof. We prove that if all partial derivatives of the function f3 do not fulfill the condition
(IV.25), then optimization will not be possible. If (IV.25) is not fulfilled, then objective function
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f3 can’t increase its value in any direction and therefore the function f3 can’t increase its value
at all.

Corollary IV.2.1. After substitution (IV.19) to (IV.25) we get
yck

(Ecd
− Eck

) > 0 when αck
= 0

yck
(Ecd

− Eck
) < 0 when αck

= C
yck

(Ecd
− Eck

) 6= 0 when 0 < αck
< C

After simplification:
When yck

= 1:
Eck

< Ecd
when αck

= 0
Eck

> Ecd
when αck

= C
Eck
6= Ecd

when 0 < αck
< C

When yck
= −1:

Eck
> Ecd

when αck
= 0

Eck
< Ecd

when αck
= C

Eck
6= Ecd

when 0 < αck
< C

Theorem IV.2.4 (Sufficient optimization conditions based on partial derivatives). If one of the
partial derivatives of the function f3 fulfills the condition (IV.25), then optimization is possible
based on partial derivatives for some parameter changes.

Proof. We can change the parameter which fulfills the condition (IV.25). The remaining param-
eters which are attributed to f3 variables can stay unchanged, and then f3 value will grow.

Theorem IV.2.5 (Overall optimization conditions). Optimization is possible for some param-
eter changes, if and only if there exist two parameters ci, where i ∈ {1, 2, . . . , p}, which belong
to the opposite groups G1 and G2 and one of the partial derivatives of the function f3 fulfills the
condition (IV.25).

Proof. Because of Thm. IV.2.1, Thm. IV.2.2, Thm. IV.2.3, Thm. IV.2.4 we only have to prove,
that overall optimization is a multiplication of optimization based on (IV.18) and based on partial
derivatives. This can be shown in the terms of multidimensional functions with set of linear
constraints and one nonlinear constraint. Multidimensional function f3 can be optimized when
conditions with derivatives are fulfilled with respect to the linear conditions. There is additionaly
only one nonlinear constraint. When it is also fulfilled, then optimization is possible.

IV.2.2 Choosing Two Parameters to a Working Set

In the standard multidimensional heuristic, we do not graduate the condition based on (IV.18)
and therefore we only want to fulfill this condition.

Using the optimization conditions based on partial derivatives, we choose those two param-
eters which maximize mcdck

defined as
when parameter ck is bound and belongs to the G1 group, then

mcdck
:= Ecd

− Eck
, (IV.26)

when parameter ck is bound and belongs to the G2 group, then

mcdck
:= Eck

− Ecd
, (IV.27)

when parameter ck is non bound, then

mcdck
:= |Eck

− Ecd
| . (IV.28)

The conclusion from above is that the best two parameters to optimize will be with minimal E
from G1 group and with maximal E from G2 group, if the chosen parameters are different.
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IV.2.3 Choosing Remaining Parameters

One of the already chosen parameters is cd parameter. In order to maximize mcdck
for the

remaining parameters, that have to be chosen, we choose them from the opposite group to the
group with cd parameter: when αcd

belongs to the G1 group, then the remaining parameters are
chosen from the G2 group, when αcd

belongs to the G2 group, then the remaining parameters
are chosen from the G1 group.

After choosing two parameters, cd parameter can be one of them. So we choose remaining
parameters either from G1 group or from G2 group, and then compare both cases by summing
mi values for all chosen parameters. The case with maximal sum of mi is finally chosen.

IV.2.4 Alternative Derivation from KKT Conditions

We can derive the presented above heuristic directly from KKT conditions (III.15), (III.16). We
have the following cases:

• When αi = 0, then from (III.16), ξi = 0. From (III.15)

yi (wxi + b) ≥ 1 (IV.29)

when yi = 1
b ≥ 1− wxi (IV.30)

when yi = −1
b ≤ −wxi − 1 . (IV.31)

• When αi = C
yi (wxi + b)− 1 + ξi = 0 (IV.32)

ξi = −yi (wxi + b) + 1 . (IV.33)

Because ξi ≥ 0, so
− yi (wxi + b) + 1 ≥ 0 (IV.34)

yi (wxi + b) ≤ 1 (IV.35)

when yi = 1
b ≤ 1− wxi (IV.36)

when yi = −1
b ≥ −wxi − 1 . (IV.37)

• When 0 < αi < C, then ξi = 0 and

yi (wxi + b)− 1 = 0 (IV.38)

b = −wxi + yi . (IV.39)

We can transform above equations to a dual form because

wi =
∑
k

αkykxik (IV.40)

wxi =
∑
j

xij
∑
k

αkykxkj =
∑
k

∑
j

αkykxkjxij =
∑
k

αkykKki . (IV.41)

With the notation
Ei =

∑
j

yjαjKij − yi (IV.42)

we get
wxi = Ei + yi . (IV.43)

56



Implementation Techniques Based on KKT ConditionsIV.3 Sequential Multidimensional Subsolver

Inequality constraints with symbol Ei are

• when αi = 0 and y = 1
b ≥ −Ei (IV.44)

when y = -1
b ≤ −Ei , (IV.45)

• when αi = C and y = 1
b ≤ −Ei (IV.46)

when y = -1
b ≥ −Ei , (IV.47)

• when 0 < αi < C
b = −Ei . (IV.48)

From the above we can conclude the same optimization conditions as derived in the previous
part.

IV.3 Sequential Multidimensional Subsolver
There were two basic methods for solving SVM subproblems. A new, third method was recently
proposed [29].

1. Solve 2 parameter subproblems analytically (SMO algorithm).

2. Solve more than 2 parameter subproblems with a general quadratic programming solver
(Multiparameter General Solver).

3. Solve more than 2 parameter subproblems with SMO algorithm (SMS).

The third option will be analyzed here.

IV.3.1 Comparison of SMS with Multiparameter General Solvers

In the second method, subproblems are solved by quadratic programming solvers (for example
interior point method solver, see [43]) which have computation times independent from the SVM
problem length, but dependent on a subproblem length: O (p). Also the third solution solves
subproblems with computation time O (p). However, the proposed solver is less complicated
and easier to implement.

IV.3.2 Comparison of SMS with SMO

The second and third solvers solve more than 2 parameter subproblems. In practice, generally
SVM problems are computed faster with the second and third solvers than with the first one.

We can deduce primal optimization problem for OP 17

OP 19.

min
~w,b,~ξ

f
(
~w, b, ~ξ

)
= ‖~w‖2 + C

n∑
i=1

ξi −
n∑

i=1
i/∈P

αi (yih (~xi)− 1 + ξi)−
n∑

i=1
i/∈P

(C − αi) ξi (IV.49)

subject to
ycih ( ~xci) ≥ 1− ξci + ϕi (IV.50)

ξci ≥ 0 (IV.51)

for i ∈ {1, . . . , p}, where h (~xi) = ~w · ~xi + b for i ∈ {1, . . . , n}.
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We can notice differences that the set of constraints is limited to subproblem variables, and
additional terms are present in a cost function. We can notice that KKT conditions for OP 19
are similar to (III.15), (III.16){

βi (ycih ( ~xci)− 1− ϕci + ξci) = 0
(C − βi) ξci = 0 (IV.52)

for i ∈ {1, . . . , p},

wi =
n∑
j=1

αjy
j
cxij (IV.53)

for i ∈ {1, . . . ,m},
p∑
i=1

βiyci +
n∑

i=1
i/∈P

yiαi = 0 . (IV.54)

KKT complementary conditions are the same as for OP 13, but only for variable parameters.
The linear condition is also slightly different, because it contains an information that the linear
constraint for OP 13 should be fulfilled. Nonetheless, it is possible to use slightly modified SMO
method for solving OP 17. We have to two variables γ1 and γ2 for e1 and e2 indexes respectively
where e1, e2 ∈ {1, . . . , n} and d1, d2 indexes in P respectively where d1, d2 ∈ {1, . . . , p}. All
values of β before running SMO are set that βi = αci for i = {1, . . . , p}. A solution for 2
parameter subproblems for OP 17 is almost the same as for SMO

γunc2 = βd2 + yc2 (Ee1 − Ee2)
κ

(IV.55)

γ2 =


V, if γunc2 > V
γunc2 , if U ≤ γunc2 ≤ V
U, if γunc2 < U

(IV.56)

γ1 = βd1 + ye1ye2 (βd2 − γ2) , (IV.57)

where
Ei =

p∑
j=1

ycjβjK
(
~xci , ~xcj

)
+

n∑
j=1
j /∈P

yjαjK (~xi, ~xj)− yi − yiϕi (IV.58)

for i ∈ {1, . . . , n}
κ = Ke1e1 +Ke2e2 − 2Ke1e2 (IV.59)

When ye1 6= ye2 , then
U = max (0, βd2 − βd1) (IV.60)

V = min (Cc2 , Cc1 − βc1 + βc2) . (IV.61)

When ye1 = ye2 , then
U = max (0, βd1 + βd2 − Ce1) (IV.62)

V = min (Ce2 , βd1 + βd2) . (IV.63)

So in order to solve OP 17 we use SMO method, with the difference that Eci for i = {1, . . . , p}
are used while running SMO, and updated globally after SMO solves OP 17. From the practical
point of view it is enough to use existing code for SMO for solving subproblems.

IV.3.3 Experiments

We compared SMS with SMO and found that in deed SMS is generally faster than SMO. The
SVM optimization with SMS algorithm was tested with the subproblem size of 5. The size was
experimentally chosen as the best size among the others.
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IV.4 Heuristic of Alternatives

SVM standard heuristic choose parameters in every iteration based on KKT conditions. We
propose additionally taking into account objective function value growth from OP 15.

The HoA for the selected pairs of parameters compute objective function growth and choose
the pair maximizing this growth. Both heuristic try to near to the solution the most in every
iteration. Sometimes they choose the same parameters, sometimes not.

In HoA the strategy of generating pairs to check is to create pairs from parameters which
fulfill SVM optimization conditions the best or near the best. In the set of pairs there is always
a pair, that would be chosen by SVM standard heuristic. So the heuristic of alternatives has two
strategies incorporated, one to check optimization conditions and the second to check objective
function value growth.

The pairs that will be chosen for checking might look like this

(s11, s21) , (s12, s21) , (s11, s22) , (s13, s21) , . . . . (IV.64)

The pair which has the maximal objective function value growth will be chosen. In practice, we
choose among 4, 9 or 16 pairs, e.g.

(s11, s21) , (s12, s21) , (s11, s22) , (s12, s21) . (IV.65)

Note that we excluded pairs with both parameters the same.

IV.4.1 Comparison of Time Complexity

In SMO standard heuristic in every iteration optimization conditions must be computed. For ev-
ery parameter, we have to compute E value. The complexity of computing E value is O (n). For
all parameters and all iterations the complexity is O

(
kn2), where k is the number of iterations.

In HoA objective function value growth of OP 13 needs to be computed in every iteration for
every alternative pair. From the (IV.1) we get the formula for objective function value growth

∆f2
(
~β
)

=
2∑
i=1

∆βi −
2∑
j=1

ycj ∆βj
n∑

i=1
i/∈C

yiαiKcji − 1
2

2∑
i=1

(
β2
inew − β2

iold
)
Kcici

−yc1c2 (β1newβ2new − β1oldβ2old)Kc1c2 .

(IV.66)

This step needs computing solution for all alternative pairs. Computing solution for single
alternative pair has constant time. The complexity of computing objective function growth for
all iterations is O (kmn), where m is the number of alternative pairs in every iteration. Overall
complexity of heuristic of alternatives is O

(
kn2 + kmn

)
. The complexity of HoA differs from

SMO standard heuristic with the kmn part, which does not influence on overall time, when the
number of parameters is big enough.

Both heuristics can be speed up by incorporating actualization of E values for all parame-
ters. After this modification computing optimization conditions for single parameter becomes
constant. Complexity of SMO standard heuristic falls to O (kn). Computing objective func-
tion value growth also becomes constant for every parameter, so for HoA the complexity is:
O (kn+ km). The difference is the km part which doesn’t influence on overall time, when the
number of parameters is big enough.

IV.4.2 Experiments

HoA will be compared with SMO standard heuristic. We can see the comparison of a number of
iterations and computation time with HoA heuristic in Table IV.1. The method was tested with
classification and regression problems. For regression problems, we used the ε-SVR method. We
can see the improvement in the number of iterations in all tests with a linear and polynomial
kernels. For RBF kernel, results depend on a value of the sigma parameter. A strong improve-
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Table IV.1: The HoA performance for real world data sets. Column descriptions: id – an id of
a test, dn – data set name, ker – a kernel with a parameter, m1it – the number of iterations of
SVM, m21it – the number of iterations of SVM with HoA, m1ctt – cumulative training time of
SVM (in s), m2ctt – cumulative training time of SVM with HoA (in s)

id dn ker

0 a1aAll denseLinear 0.0
1 a1aAll denseRBF 0.00813
2 breast-cancer denseRBF 0.1
3 diabetes denseRBF 0.125
4 djia denseRBF 0.08333
5 abalone denseLinear 0.0
6 abalone denseRBF 0.125
7 abalone denseRBF 0.5
8 cadata denseRBF 0.125
9 djia denseLinear 0.0
10 djia denseRBF 0.1
11 djia denseRBF 0.5
12 housing denseLinear 0.0
13 housing densePolynomial 5.0
14 housing denseRBF 0.077
15 housing denseRBF 0.5

idRef m1it m2it m1ctt m2ctt

0 10291 8004 9.93725 9.6975
1 50775 50775 13582.618 13677.475
2 905 969 0.8405 1.097
3 1045 1066 0.669 0.89
4 1736 1586 1.883 2.035
5 6033 5565 18.487 19.681
6 15382 15879 99.377 122.48
7 10399 10314 67.824 76.006
8 100126 99571 3291.658 3311.83
9 1833 1251 6.202 4.506
10 1154 1073 2.283 2.339
11 2542 2307 4.27 4.243
12 4195 2857 4.555 3.438
13 414420 92011 108.594 31.754
14 318 313 0.901 0.939
15 1209 1048 2.393 2.338

ment in the number of iterations leads to the improvement in training time. Tests have shown,
that heuristic of alternatives can be better than SMO standard heuristic.

IV.5 Summary
In this thesis, we analyzed two implementation improvements for SVM, the first one for speed
of training of SVM, the second one for simplifying implementation of SVM solver. Tests on real
world data sets show, that HoA can lead to a decrease of time of training of SVM, compared to
the standard heuristic. Using the SMS method, we get simpler implementation of SVM solver
with similar speed performance. Both methods can be used with δ-SVR and ε-SVR for solving
regression problems.
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Chapter V

Applications: Order Execution
Strategies

Big orders cannot be executed on exchanges at once because of the limited number of offers on
the opposite side. They must be split into smaller orders and execute in a longer time period.
There are various possible measures of the quality of order execution. The most popular are
market VWAP, pre-trade price, and post-trade price, all values compared to VWAP for the
order. In this thesis, we investigate the first one. The model of the strategy achieving market
VWAP was presented recently in [1, 2]. In [1], authors found that improving quality of the
volume prediction leads to better execution performance, however they had found contradicting
results in [9].

The goal of the conducted work was to extend the theoretical results for the execution
strategy achieving VWAP and to show on which factors the final execution error depends on.
Furthermore, we wanted to implement a part of the strategy by using a general purpose machine
learning method such as SVR.

In [1], authors predict a volume function by decomposing volume into two parts and using
the average method and autoregressive models for prediction. In [2], authors predict a volume
participation function by decomposing it to some parts and using a generalized method of
moments for predicting parameters of a statistical model. We propose to use a different approach
for prediction, namely, use general machine learning methods which do not assume any particular
distribution and statistical properties of the model. We compared SVR with some proposed null
hypotheses such as predicting volume participation while assuming constant volume profile,
prediction based on average from historical data for the same time slice and prediction from the
previous time slice.

The final execution performance depends not only on volume but also on stock prices dur-
ing order execution. One of the way of improving the strategy is to incorporate information
about prices to the model. The presented strategy splits the order to smaller chunks based on
volume participation function. The possible way of incorporating information about prices to
the model is to adjust volume participation function. We propose modeling the final solution by
incorporating prior knowledge about prices by using margin knowledge, recently proposed for
SVC [30], for δ-SVR [32] and for ε-SVR [34]. It was used for manipulating a decision curve for
classification problems, and manipulating a regression function for regression ones.

A test scenario which is investigated in this article is to split execution of the order during a
one exchange session. Note that the size of the order has a direct influence on the possibility of
achieving VWAP. It is easier to achieve VWAP for bigger orders relative to the daily volume,
because the order is also a part of the market VWAP. In the extreme situation where the order
is the only one executed during the session we achieve VWAP (neglecting transaction costs of
executing the order).

The outline of the thesis is as follows. In the first section, we define VWAP ratio, in the second
section, we present an introduction to Volume Participation Strategy. In the third section, we
present predicting volume participation, in the fourth section, we show how to incorporate prior
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knowledge about prices, and finally in the fifth section, we describe conducted experiments.

V.1 VWAP Ratio
In this section, we present the definition of the VWAP ratio, preceded by some definitions and
propositions regarding VWAP measure which we will use later. First, we will introduce some
notation: T is the time period for executing the order (e.g. one session), n is the number of
trades during T , v (i) is a volume of the i-th trade, v is a market volume in T , p (i) is a price of
the i-th trade. We have

v =
n∑
i=1

v (i) . (V.1)

Definition V.1.1 (Market VWAP). Market VWAP is

VWAP =
∑n
i=1 p (i) v (i)

v
. (V.2)

For a volume of the order in T , labeled v0, we have

v0 =
n∑
i=1

v0 (i) , (V.3)

where v0 (i) is a part of the order volume belongs to the i-th trade.

Definition V.1.2 (Order VWAP). Order VWAP is

VWAP0 =
∑n
i=1 p (i) v0 (i)

v0
. (V.4)

In the presented strategy, we divide T to some time slices. Below, we list some propositions
regarding time slices.

Proposition V.1.1. Assuming that the volume is divided to two parts with known VWAP for
these parts (VWAP1 and VWAP2) and known volumes (v1 and v2 respectively), overall VWAP
is

VWAP = VWAP1v1 + VWAP2v2
v1 + v2

. (V.5)

We can generalize this proposition to multiple parts, e.g. multiple time slices, we can divide
T to m parts, aggregated volume from all trades in the i-th part is noted as v (Ti), VWAP for
all trades in the i-th part is noted as VWAP (Ti), aggregated volume of the order in the i-th
part is noted as v0 (Ti). Then a market volume in T is

v =
m∑
i=1

v (Ti) . (V.6)

Market VWAP in T is
VWAP =

∑m
i=1 VWAP (Ti) v (Ti)

v
. (V.7)

A volume of the order in T is
v0 =

m∑
i=1

v0 (Ti) (V.8)

and order VWAP in T is

VWAP0 =
∑m
i=1 VWAP0 (Ti) v0 (Ti)

v0
. (V.9)

In this thesis, we investigate a problem of developing a strategy which optimizes the ratio of
order VWAP to market VWAP for future trades.
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Definition V.1.3 (VWAP ratio). A VWAP ratio is defined as

VWAP0
VWAP

=
∑n
i=1 p (i) v0 (i)

v0

v∑n
i=1 p (i) v (i) . (V.10)

We can reformulate (V.10) by substituting

v0 = V1v (V.11)

and we get
VWAP0
VWAP

=
∑n
i=1 p (i) v0 (i)

V1
∑n
i=1 p (i) v (i) , (V.12)

where V1 is a ratio of order volume to market volume

V1 = v0
v

. (V.13)

For m time slices we get

VWAP0
VWAP

=
∑m
i=1 VWAP (Ti) v0 (Ti)

V1
∑m
i=1 VWAP (Ti) v (Ti)

. (V.14)

For buy orders we would like to minimize this ratio, for sell orders maximize. Particularly, the
goal is to achieve the ratio equal or less than 1 for buy orders and equal or greater than 1 for
sell orders. Note that a challenge in optimizing this ratio is that future volume and/or future
prices have to be predicted. First, we will present a strategy which achieves the ratio equal to 1
by predicting volume participation. Second, we will present an extension of this strategy which
allows to incorporate information about prices. Such separation is desirable, because we can
compute the error for prediction based on volume, and the error for price prediction.

V.2 Volume Participation Strategy

Here, we describe a model of the strategy which achieves VWAP ratio equal to 1 without
assuming any price information. The strategy is to trade with a predicted volume. It means
that for every time slice Ti we have

v0 (Ti) = V1v (Ti) = v0
v
v (Ti) . (V.15)

We can see that the strategy fulfills (V.8). We can reformulate it

v0 (Ti) = v (Ti)
v

v0 = r (Ti) v0 , (V.16)

where
r (Ti) = v (Ti)

v
. (V.17)

The r is called volume participation, Fig. V.1. We can easily check that for this strategy (V.11)
is fulfilled. After substituting (V.15) to (V.14) we get the ratio equals to 1.

In order to use this strategy in practice we have to predict volume participation r (Ti) (V.16)
for every time slice and try to trade at VWAP (Ti) inside every time slice. Note that it would be
possible to use (V.15) instead of (V.16), but then we would need to predict volume v. Predicting
separately volume v and v (Ti) is more richer prediction than just only ratios r (Ti). For the
same ratios, we could have multiple possible values of v. In other words, when we have only
ratios r (Ti) we are not able to conclude about a value of v. There exist multiple different volume
shapes with the same ratios r (Ti).

Note that for different values of a free term a of a volume function we can get different values
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TT2

V

t0

Figure V.1: Idea of volume participation. Volume participation for T2 is interpreted as a ratio
of gray area to the whole area below volume from 0 to T

of r (Tp) for some p, in other words translating a volume function would change v0 (Tp)

v0 (Tp) = v0 (v (Tp) + a)∑m
i=1 v (Tp) + a

. (V.18)

The v0 (Tp) can have different values for different values of the free term a. So it is not enough
to predict only volume shape (without a free term).

Let’s consider an improvement to the model that our orders are taken into account in global
volume. We will redefine v as a volume of other orders. Then we have

VWAP =
∑m
i=1 VWAP (Ti) (v (Ti) + v0 (Ti))

v + v0
. (V.19)

For m time slices the ratio is

VWAP0
VWAP

= (v + v0)
∑m
i=1 VWAP (Ti) v0 (Ti)

v0
∑m
i=1 VWAP (Ti) (v (Ti) + v0 (Ti))

. (V.20)

Let’s analyze the similar strategy of trading as before, that is

v0 (Ti) = v0
v
v (Ti) . (V.21)

We can see that (V.8) is fulfilled. Let’s derive the ratio

VWAP0
VWAP

=
(v + v0) v0

v

∑m
i=1 VWAP (Ti) v (Ti)

v0
(
1 + v0

v

)∑m
i=1 VWAP (Ti) v (Ti)

(V.22)

VWAP0
VWAP

=
v0 + v2

0
v

v0 + v2
0
v

= 1 . (V.23)

We can see that again a VWAP ratio is equal to 1.

V.2.1 Errors for Volume Participation Strategy

There are two possible sources of errors in realizing this strategy. The first error ε1 is related
to trading with VWAP (Ti), the second error ε2 is related to predicting volume participation in
Ti, after substituting (V.16) to (V.9) and considering the errors

VWAP0 =
m∑
i=1

(VWAP (Ti) + ε1 (Ti)) (r (Ti) + ε2 (Ti)) . (V.24)
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While comparing VWAP to VWAP0 we get the following error

Theorem V.2.1.

ε = VWAP0
VWAP

− 1 =
∑m
i=1 ε1 (Ti) r (Ti)∑m

i=1 VWAP (Ti) r (Ti)
+
∑m
i=1 ε2 (Ti)VWAP (Ti)∑m
i=1 VWAP (Ti) r (Ti)

(V.25)

+
∑m
i=1 ε1 (Ti) ε2 (Ti)∑m

i=1 VWAP (Ti) r (Ti)
. (V.26)

In this thesis, we are interested mainly in optimizing ε2. So we either generate prior values
of E1 where ε1 (Ti) = E1 (Ti)VWAP (Ti), or substitute ε1 (Ti) = 0. Lowering ε2 leads to a lower
variance of ε.

Comparison to time-weighted average price (TWAP) strategy. The TWAP strategy trades
the same quantity in every time slice. The TWAP can be interpreted as the volume participation
strategy with predicted volume as a constant function. We expect worser prediction of volume
participation for TWAP, therefore greater value of ε1 compared to the VWAP strategy, so we
expect greater variance of ε for TWAP method.

V.3 Predicting Volume Participation

In order to use Volume Participation Strategy we need to predict volume participation r (Ti) for
all time slices. In this thesis, we investigate four methods of prediction, the first one arbitrarily
assumes that a volume is a constant function, so a volume participation function is also a
constant one (it is used in TWAP strategy), the second one predicts r (Ti) as an average value
from previous days, it is kind of a local strategy. The third one predicts r (Ti) as r (Ti−1) from
the previous time slice and the last one predicts volume participation r (Ti) from historical data
by assuming that r (·) is a continuous function. There is only one feature that is the id of the
time slice, so the feature space is a discrete one. For the last prediction, we use SVR methods.
Volume participation prediction has two additional constraints that should be fulfilled:

m∑
i=1

r (Ti) = 1 , (V.27)

r (Ti) > 0 . (V.28)

For the TWAP predictor, they are fulfilled out of hand. For the remaining predictors we need
special consideration. For the second predictor, we propose the following procedure: we equally
decrease values of all r (Ti) in order to fulfill (V.27), and when some values are below zero, we
adjust them to zero. We repeat these two steps until both constraints are fulfilled. For the last
predictor, we propose the direct incorporation of (V.27) and (V.28) to the optimization problem.

V.4 Incorporating Prior Knowledge About Prices

Volume Participation Strategy achieves the ratio equal to 1 in the presented model. It is possible
to achieve better execution performance by taking into account price prediction. The general
idea of an improvement is to increase order volume when the predicted price is relatively low
during the session for buy orders (relatively high for sell orders).

There are two problems concerning manipulating a participation function based on price
prediction. First is in achieving enough price prediction performance for improving the error
ε. Second, that increased order volume for some time slices could change noticeably the prices
during the next sessions (it is called market impact) and additionally decrease price prediction
performance.

Because price prediction is a challenging task, we propose to incorporate simple price pre-
diction rules, such as in the second part of the session prices will be generally higher than in the
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first one (or vice versa). For this rule we might want to increase participation in the first half
of the session, and decrease in the second one (for buy orders). The simple way of incorporating
such knowledge is to increase participation by some value e.g. p = 0.1 for the first part of the
session and decrease by the same value in the second part of the session (assuming the even
number of time slices). The problem with this solution is that participation rate is not smooth
in the half of the session. The second issue is that participation change by the same value in
the first part and the second. We cannot improve participation changes by using price infor-
mation, because we have just only simple prediction rules. So we propose to set participation
changes based on volume participation prediction performance. We want to increase value and
chance of changing p for time slices with worser volume participation prediction performance,
and decrease value of p for the rest. For this purpose, we use SVM with margin knowledge
introduced for SVC in [30, 32], for ε-SVR in [34] and for δ-SVR in [33]. The technique was used
for manipulating classification boundaries [30] and regression functions [33]. It posses a desired
property of adjusting the output function depending on the prediction performance.

V.4.1 Defining Knowledge About Prices

We divide the period T to 2 periods, first half of the session and the second. We propose setting
a tractor parameter ϕi = r for all training examples, where r is a configurable parameter. When
we expect that prices will be higher in the second part of the session, for every tractor from the
first part of the session we set −1 class, and for the second part we set 1 class (in reverse for
opposite prediction).

V.5 Experiments

We divide experiments into three parts: in the first part we compare prediction performance
of SVM with null hypotheses. In the second experiment, we compare ε for SVM and null
hypotheses. We compare prediction performance of SVM with the following null hypotheses:
prediction based on constant function, prediction based on average participation from historical
data for the same time slice and prediction from the previous time slice. In the third experiment,
we compare ε for δ-SVR and δ-SVR with incorporated margin knowledge.

For solving ε-SVR and SVC for particular parameters we use LibSVM [3] ported to Java.
Data which are used for experiments are tick data for securities from National Association of
Securities Dealers Automated Quotations (NASDAQ)-100 index for about a half year period
(from 01.01.2011 to 20.05.2011) which were compressed to a desired size of time slices. Data
includes trades from opening and closing crosses. For all data sets, every feature is scaled linearly
to [0, 1]. The results are averaged for all tested instruments. For variable parameters like the
C, σ for the RBF kernel, δ for δ-SVR, and ε for ε-SVR, we use a double grid search method for
finding the best values. We use modified double cross validation with shifting data. Inner cross
validation is used for finding the best values of the variable parameters. Instead of standard
outer cross validation, we shift data. Hence, the validation set is always after the training set.
We use a fixed size for the training set, that is 2 weeks, and for the validation set 1 week.

V.5.1 Prediction Performance and ε Comparison

We compare δ-SVR and ε-SVR with null hypotheses. Results are presented in Table V.1. For
fair comparison purposes we choose ε1 = 0. We performed tests for half hour slices.

We achieve better generalization performance for ε-SVR and δ-SVR for almost all null hy-
potheses with better results for δ-SVR. The ε-SVR had problems with achieving significant
improvements for a linear kernel. The average null hypothesis is the most competitive com-
paring to SVR, we achieve slightly better generalization performance for SVR, but without
significant difference based on t-test for ε-SVR, with significant difference for δ-SVR. Compar-
ing additional measure of variance of ε we achieve slightly better results for ε-SVR than for
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Table V.1: Performance of δ-SVR for order execution. Column descriptions: id – an id of a
test, a name – a name of the test, δ-SVR compared with hypotheses 1 or 2 or 3, ts – a size of
time slice (in minutes), simT – the number of shifts, results are averaged, ker – a kernel (pol –
a polynomial kernel), kerP – a kernel parameter (for a polynomial kernel it is a dimension, for
the RBF kernel it is σ), trs – a training set size for every stock, all – the number of all data for
every stock, dm – a dimension of the problem, tr12M – a percent average difference in mean
error for training data, if greater than 0 than SVM is better, te12M – the same as tr12M, but
for testing data, teT – t value for the t-test for comparing testing error, e12M – comparison of
a variance of ε. The value ’var’ means that we search for the best value

id name ts simT ker kerP trs all dm tr12M te12M teT e12M

1 δ-SVRvsH1 30m 5 lin — 130 1075 1 12.7% 11.7% 15.2 −92.6%
2 ε-SVRvsH1 30m 5 lin — 130 1075 1 1.11% 0.7% 0.8 0.23%
5 δ-SVRvsH1 30m 5 rbf 0.1 130 1075 1 51.2% 46.9% 62.6 -72.1%
6 ε-SVRvsH1 30m 5 rbf 0.1 130 1075 1 49.5% 45.6% 59.9 0.28%
11 δ-SVRvsH2 30m 5 rbf 0.1 130 1075 1 2.75% 3.4% 3.0 −72%
12 ε-SVRvsH2 30m 5 rbf 0.1 130 1075 1 −0.5% 1.17% 1.0 −0.02%
13 δ-SVRvsH3 30m 5 lin — 130 1075 1 10.83% 9.1% 9.58 −92.5%
14 ε-SVRvsH3 30m 5 lin — 130 1075 1 −1.05% −2.13% −2.1 0.96%
17 δ-SVRvsH3 30m 5 rbf 0.1 130 1075 1 50.1% 45.3% 48.6 -71.9%
18 ε-SVRvsH3 30m 5 rbf 0.1 130 1075 1 48.4% 44.06% 46.7 1.02%

the first and the third hypotheses, and similar results to the second hypothesis. For δ-SVR we
achieve much worser variance of ε then for all hypotheses.

V.5.2 Execution Performance with Knowledge About Prices

We compare ε for δ-SVR with incorporated prior knowledge about prices, and without. The
scope of this thesis does not include testing the effectiveness of the price prediction. Therefore
we propose the following procedure for generating prior nowledge about prices, we check in
advance on historical data whether market VWAP will be higher in the first part of the session,
or in the second one. According to this prediction we set tractors, r value is chosen arbitrarily
to 0.5. Results are presented in Table V.2.

The results show that volume participation prediction performance could be worser after
adjusting the function, but we can see significant improvement in ε for the modified solution. The
δ-SVR with prior knowledge about prices achieves better execution performance than without
prior knowledge.

V.6 Summary
In this thesis, we analyzed application of SVR for executing orders on stock markets. We
compared ε-SVR and δ-SVR with simple predictors such as the average execution price from
previous days. Tests were performed for stocks from NASDAQ-100 index. For both methods we
achieved smaller variance of execution costs. Moreover, we decreased costs of order execution
by using prediction of stock prices.

In future research, we plan to perform tests on a broader list of stocks and exchanges.
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Table V.2: Performance of δ-SVR with prior knowledge about prices for order execution. Column
descriptions: id – an id of a test, ts – a size of time slice (in hours), simT – the number of shifts,
results are averaged, ker – a kernel (pol – a polynomial kernel), kerP – a kernel parameter (for
a polynomial kernel it is a dimension, for the RBF kernel it is σ), trs – a training set size for
every stock, all – the number of all data for every stock, dm – a dimension of the problem, r – a
detractor value, tr12M – a percent average difference in mean error for training data, if greater
than 0 than SVM is better, te12M – the same as tr12M, but for testing data, teT – t value for
the t-test for comparing testing error, e12M – comparison of ε, eT – t-value for comparing ε.
The value ’var’ means that we search for the best value

id ts simT ker kerP trs all dm r tr12M te12M teT e12M eT

22 30m 5 rbf 0.1 130 1075 1 1 −5% −6% −1.7 19% 2.4
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Chapter VI

Summary

The main contributions of the author within the research presented in this thesis are

1. proposed a novel regression method, able to effectively used also for nonlinear problems,
theoretical and practical analysis,

2. proposed margin knowledge per example for classification and regression, theoretical and
practical analysis,

3. using margin knowledge per example for decreasing the number of support vectors,

4. application of SVM for executing orders.

In future research we plan to extend theoretical analysis of the proposed methods.
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Appendix A

Introduction to Optimization Theory

An optimization problem in Rn is one where values of a given function f : Rn → R are to
be maximized or minimized over a given set D ⊂ Rn. The function f is called the objective
function, and the set D the constraint set. Notationally, we will represent these problems by

maximize f (x)

subject to
~x ∈ D

Alternatively
max {f (~x) |x ∈ D}

Such problems are called maximization problems. A solution to the problem max {f (~x) |~x ∈ D)
is a point ~x ∈ D such as

f (~x) ≥ f (~y)

for all ~y ∈ D. We will say in this case that f attains a maximum on D at x, and also refer to x
as a maximizer of f on D.

We are especially interested in constrained optimization problems, the constraint set D has
a form

D = U ∩ {~x ∈ Rn|g (~x) = 0, h (~x) ≥ 0}

where U ⊂ Rn is open, g : Rn → Rk, and h : Rn → Rn. We will refer to the functions
g = (g1, . . . , gk) as equality constraints, and to the functions h = (h1, . . . , hn) as inequality
constraints.

First we will investigate the case where all the constraints are equality constraints, i.e. where
the constraint set D can be represented as

D = U ∩ {~x|g (~x) = 0}

where U ⊂ Rn is open, g : Rn → Rk. We will call this case as equality-constrained optimization
problems. Second we will investigate the case where all the constraints are inequality constraints,
i.e. where the constraint set has the form

D = U ∩ {~x|h (~x) ≥ 0}

where U ⊂ Rn is open, h : Rn → Rn. We label these inequality-constrained optimization prob-
lems. Finally, we will combine both type of constraints into a general case of mixed constraints.

A.1 Equality Constraints

First we provide a characterization of local optima of equality-constrained optimization prob-
lems.
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Theorem A.1.1 (The Theorem of Lagrange). Let f : Rn → R and gi : Rn → Rk be C1

functions, i = 1, . . . , k. Suppose ~x∗ is a local maximum or minimum of f on the set

D = U ∩ {~x|gi (~x) = 0, i = 1, . . . , k} ,

where U ⊂ Rn is open. Suppose also that ρ (Dg (x∗)) = k. Then, there exists a vector λ∗ =
(λ∗1, . . . , λ∗k) ∈ Rk such that

Df (x∗) +
k∑
j=1

λ∗iDgi (x∗) = 0

There are also called first-order necessary conditions. The vector ~λ∗ is called the vector of
Lagrangian multipliers. A function L : D ×Rk → R is called the Lagrangian and is defined by:

L
(
~x,~λ

)
= f (~x) +

k∑
i=1

λigi (~x) .

Now we will present second-order conditions for these problems. We will assume that f and
g are both C2 functions.

Theorem A.1.2. Suppose there exist points ~x∗ ∈ D and λ∗ ∈ Rk such that ρ (Dg (x∗)) = k,
and Df (x∗) +

∑k
i=1 λ

∗
iDgi (x∗) = 0. Define

Z (x∗) = {z ∈ Rn|Dg (x∗) z = 0}

and let D2L∗ denote the n× n matrix

D2L (x∗, λ∗) = D2f (x∗) +
k∑
i=1

λ∗iD
2gi (x∗)

1. If f has a local maximum on D at x∗, then z′D2L∗z ≤ 0 for all z ∈ Z (x∗)

2. If f has a local minimum on D at x∗, then z′D2L∗z ≥ 0 for all z ∈ Z (x∗)

3. If z′D2L∗z < 0 for all z ∈ Z (x∗) with z 6= 0, then x∗ is a strict local maximum of f on D

4. If z′D2L∗z > 0 for all z ∈ Z (x∗) with z 6= 0, then x∗ is a strict local minimum of f on D

A.2 Inequality Constraints

We say that an inequality constraint hi (~x) ≥ 0 is effective at a point x∗ if the constraint holds
with equality at x∗, that is, we have hi (x∗) = 0.

Theorem A.2.1 (Theorem of Kuhn and Tucker). Let f : Rn → R and hi : Rn → R be C1

functions, i = 1, . . . , n. Suppose x∗ is a local maximum of f on

D = U ∩ {x ∈ Rn|hi (x) ≥ 0, i = 1, . . . , n} ,

where U is an open set in Rn. Let E ⊂ {1, . . . , n} denote the set of effective constraints at
x∗, and let hE = (hi)i∈E. Suppose ρ (DhE (x∗)) = |E|. Then, there exists a vector λ∗ =
(λ∗1, . . . , λ∗n) ∈ Rn such that the following conditions are met:

1. λ∗i ≥ 0 and λ∗ihi (x∗) = 0 for i = 1, . . . , n

2. Df (x∗) +
∑n
i=1 λ

∗
iDhi (x∗) = 0

The first condition is called complementary slackness.
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A.3 Mixed Constraints

For notational ease, define

ci =
{
gi, if i ∈ {1, . . . , k}
hi−k, if i ∈ {k + 1, . . . , k + n}

Theorem A.3.1. Let f : Rn → R and ci : Rn → R, i = 1, . . . , l + k be C1 functions. Suppose
x∗ maximizes f on

D = U ∩ {~x ∈ Rn|ci (x) = 0, i = 1, . . . , k, cj (x) ≥ 0, j = k + 1, . . . , k + n}

where U ⊂ Rn is open. Let E ⊂ {1, . . . , k + n} denote the set of effective constraints at x∗, and
let cE = (ci)i∈E. Suppose ρ (DcE (x∗)) = |E|. Then, there exists λ ∈ Rl+k such that

1. λj ≥ 0 and λjci (x∗) = 0 for j ∈ {k + 1, . . . , k + n}

2. Df (x∗) +
∑k+n
i=1 λiDci (x∗) = 0

A.4 Optimization under Convexity

In convex optimization problems, all local optima must also be global optima.

Theorem A.4.1 (Theorem of Kuhn and Tucker). Let f be a concave C1 function mapping U
into R, where U ⊂ Rn is open and convex. For i = 1, . . . , n, let hi : U → R also be concave C1

functions. Suppose there is some x̂ ∈ U such that

hi (x̂) > 0

where i = 1, . . . , n. Then x∗ maximizes f over

D = {x ∈ U |hi (x) ≥ 0, i = 1, . . . , n}

if and only if there is λ∗ ∈ Rk such that the Kuhn-Tucker first-order conditions hold:

1. Df (x∗) +
∑n
i=1 λ

∗
iDhi (x∗) = 0

2. λ∗ ≥ 0 and
∑n
i=1 λ

∗
ihi (x∗) = 0

The condition that there exist a point x̂ at which hi (x̂) ≥ 0 for all i is called Slater’s
condition.

A.5 Duality

Theorem A.5.1. If the point
(
~x∗, ~λ∗

)
, with ~λ∗ ≥ 0 is a saddle point of the Lagrangian associated

with the primal problem then ~x∗ is a solution to the primal problem.

Define the dual function
h
(
~λ
)

= min
~x
L
(
~x,~λ

)
Defining the set

D =
{
~λ|h

(
~λ
)
∃ and ~λ ≥ 0

}
allows for the formulation of the dual problem

maximize
~λ∈D

h
(
~λ
)
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which is equivalent to
max
~λ∈D

(
min
~x
L
(
~x,~λ

))

Theorem A.5.2. The point
(
~x∗, ~λ∗

)
, with ~λ∗ ≥ 0 is a saddle point of the Lagrangian function

of the primal problem, if and only if:

1. ~x∗ is a solution to the primal problem

2. ~λ∗ is a solution to the dual problem

3. f (~x∗) = h
(
~λ∗
)
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Appendix B

Introduction

B.1 Derivation of the Dual Form of OP 4

OP 20.
max
~α,~r

d (~α,~r) (B.1)

where

d (~α,~r) = min
~w
t
(
~w, ~α, ~ξ, ~r

)
t
(
~w, ~α, ~ξ, ~r

)
= 1

2 ‖~w‖
2 +

n∑
i=1

Ciξi −

−
n∑
i=1

αi (yih (~xi)− 1 + ξi − ϕi)−
n∑
i=1

riξi

subject to

αi ≥ 0
ri ≥ 0

for i ∈ {1, . . . , n}.

A partial derivative with respect to wi is

∂h
(
~w, ~α, ~ξ, ~r

)
∂wi

= wi −
n∑
j=1

αjyjxji = 0 (B.2)

for i ∈ {1, . . . ,m}. A partial derivative with respect to ξi is

∂h
(
~w, ~α, ~ξ, ~r

)
∂ξi

= Ci − ri − αi = 0 . (B.3)

After substitution of above equations to d (~α,~r) we get

d (~α,~r) = 1
2
m∑
i=1

(
n∑
j=1

αjyjxji

)(
n∑
k=1

αkykxki

)
−

n∑
i=1

αiyi

(
m∑
j=1

wjxij

)
+

n∑
i=1

αi (1 + ϕi) + Ci
n∑
i=1

ξi

−
n∑
i=1

αiξi −
n∑
i=1

riξi

(B.4)
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d (~α,~r) = 1
2
m∑
i=1

n∑
j=1

n∑
k=1

αkαjykyjxkixji −
n∑
i=1

αiyi
m∑
j=1

wjxij

+
n∑
i=1

αi (1 + ϕi)
(B.5)

d (~α,~r) = 1
2

n∑
j=1

n∑
k=1

αkαjykyj
m∑
i=1

xjixki

−
n∑
i=1

αiyi
m∑
j=1

xij
n∑
k=1

αkykxkj +
n∑
i=1

αi (1 + ϕi)
(B.6)

d (~α,~r) = 1
2

n∑
j=1

n∑
k=1

αkαjykyj
m∑
i=1

xjixki

−
n∑
i=1

n∑
k=1

αkαiykyi
m∑
j=1

xijxkj +
n∑
i=1

αi (1 + ϕi)
(B.7)

d (~α,~r) = −1
2

n∑
i=1

n∑
k=1

αkαiykyi

m∑
j=1

xijxkj +
n∑
i=1

αi (1 + ϕi) . (B.8)

The dual form is

OP 21.
max
~α,~r

d (~α,~r) =
n∑
i=1

αi (1 + ϕi)−
1
2

n∑
i=1

n∑
k=1

αkαiykyi

m∑
j=1

xijxkj (B.9)

subject to
Ci = ri + αi (B.10)

αi ≥ 0 (B.11)

ri ≥ 0 (B.12)

for i ∈ {1, . . . , n}.
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Appendix C

Regression Based on Binary
Classification

C.1 An Idea of a Set of Indicator Functions

The classification problem could be defined in terms of minimizing the risk function [45]

R (α) =
∫
L (c, φ (x, α)) dF (c, x) , (C.1)

where L is a loss function defined as

L (c, φ) =
{

0 if c = φ
1 if c 6= φ .

(C.2)

The regression problem could be defined as minimizing the risk function

R (α) =
∫

(y − f (x, α))2 dF (y, x) . (C.3)

Vapnik estimated the rate of uniform convergence for the set of bounded functions A ≤
Q (z, α) ≤ B as following

P

{
sup
α∈A

(∫
Q (z, α) dF (z)− 1

n

n∑
i=1

Q (zi, α)
)
> ε

}
(C.4)

≤ P
{

sup
α∈A,β∈B

(∫
Φ (Q (z, α)− β) dF (z)− 1

n

n∑
i=1

Φ (Q (zi, α)− β)
)
>

ε

B −A

}
. (C.5)

He proposed capacity concepts for regression estimation by introducing the set of indicator
functions for a real-valued function in the following way. Let Q (z, α∗) be a real-valued function.
The set of indicators for this function is defined as

φ (Q (z, α∗)− β) , (C.6)

where
β ∈

(
inf
z
Q (z, α∗) , sup

z
Q (z, α∗)

)
. (C.7)

The φ is 1 when Q (z, α∗)−β is greater than 0, otherwise it is 0. The complete set of indicators
for a set of real-values functions Q (z, α∗), where α ∈ A is defined as

φ (Q (z, α)− β) , (C.8)
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where α ∈ A and

β ∈ B =
(

inf
z,α

Q (z, α) , sup
z,α

Q (z, α)
)

. (C.9)

The concept of a VC dimension for a set of real-valued functions is defined as the maximal number
h of vectors z1, . . . , zh that can be shattered by the complete set of indicators φ (Q (z, α∗)− β),
a ∈ A, β ∈ B. For example, a VC dimension of a set of linear functions is the same for
classification and regression, i.e. for a set of functions

f (z, α) =
n∑
i=1

αiφi (z) + α0 , (C.10)

a VC dimension is equal to n+ 1, the same as for a set of indicator functions

f (z, α) = φ

(
n∑
i=1

αiφi (z) + α0

)
, (C.11)

because the complete set of indicators coincides with the set of linear indicator functions. For
bounded functions with bounds A = 0, B = 1, the bounds on the risk for bounded real-valued
functions coincide with the bounds on the risk for indicator functions. From the conceptual point
of view, the problem of minimizing the risk for indicator functions is equivalent to the problem of
minimizing a risk for real-valued bounded functions. Based on this idea various methods directly
replacing regression problem with a multiclass classification problem were proposed, [11, 16, 7].

C.2 A Proof of Thm. II.2.1

Proof. Original data are distributed according to the probability distribution Fr (~xr | yr). The
expected value is equal to the mode for unimodal and symmetric distributions

E [yr | ~xr] ≡ M (yr | ~xr) . (C.12)

First, we create joint random variable (~xr, yr) and we have

Fr (~xr, yr) ≡ Fr (yr | ~xr)F (~xr) . (C.13)

After the transformation we define two new random variables ( ~xc | 1) and ( ~xc | −1). The optimal
classification decision boundary contains points for which

Pr (1 | ~xc) ≡ Pr (−1 | ~xc) . (C.14)

We can rewrite it as
F ( ~xc | 1) Pr (1) = F ( ~xc | −1) Pr (−1) . (C.15)

Creating classes by duplicating points implicates that

Pr (1) = Pr (−1) , (C.16)

so
F ( ~xc | 1) = F ( ~xc | −1) . (C.17)

Because both distributions are symmetrical and unimodal the above holds for

M ( ~xc | 1) + M ( ~xc | −1)
2.0 (C.18)
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and because of symmetric translation we get

M ( ~xc | 1) + M ( ~xc | −1)
2.0 ≡ M (yr | ~xr) ≡ E [yr | ~xr] . (C.19)

C.3 A Proof of Thm. II.2.2

Proof. Consider the distribution Fr (yr | ~xr). For nonsymmetrical distributions the mean could
be different from the mode. Let’s assume that the mode is equal to 0, and assume that the mean
is equal to some m ≥ 0. So we need to prove that there exists δ such that

f (x+ δ)− f (x− δ) = 0 (C.20)

where
− δ ≤ x ≤ δ (C.21)

for
x = m . (C.22)

So
f (m+ δ)− f (m− δ) = 0 (C.23)

where
0 ≤ m ≤ δ (C.24)

When δ = m then
f (2m)− f (0) ≤ 0 (C.25)

if for some δ > m
f (m+ δ)− f (m− δ) ≥ 0 (C.26)

then from intermediate value theorem there exists the δ.

C.4 Solution for (II.54)

The following holds
p2 (R+ ∆δ)2 < R2 (C.27)

|p| (R+ ∆δ) < R (C.28)

p (R+ ∆δ) < R and p (R+ ∆δ) > −R . (C.29)

For p > 0, first inequality from (C.29) becomes

R+ ∆δ
1 + wm+1

c ∆δ
< R (C.30)

wm+1
c >

1
R

. (C.31)

For p < 0, second inequality from (C.29) becomes

R+ ∆δ
1 + wm+1

c ∆δ
> −R (C.32)

R+ ∆δ < −
(
1 + wm+1

c ∆δ
)
R (C.33)

2R+ ∆δ < −wm+1
c ∆δR (C.34)
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wm+1
c <

−2R−∆δ
∆δR (C.35)

wm+1
c <

−2
∆δ −

1
R

. (C.36)
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Appendix D

Margin Knowledge Per Example

D.1 Derivation of the Dual Form of OP 13

OP 22.
max
~α,~r

d (~α,~r) (D.1)

where

d (~α,~r) = min
~w,b

t
(
~w, b, ~α, ~ξ, ~r

)
t
(
~w, b, ~α, ~ξ, ~r

)
= 1

2 |~w|
2 +

n∑
i=1

Ciξi −

−
n∑
i=1

αi (yih (~xi)− 1 + ξi − ϕi)−
n∑
i=1

riξi

subject to

αi ≥ 0
ri ≥ 0

for i ∈ {1, . . . , n}.

A partial derivative with respect to wi is

∂h
(
~w, b, ~α, ~ξ, ~r

)
∂wi

= wi −
n∑
j=1

αjyjxji = 0 (D.2)

for i ∈ {1, . . . ,m}. A partial derivative with respect to b is

∂h
(
~w, b, ~α, ~ξ, ~r

)
∂b

=
n∑
i=1

αiyi = 0 . (D.3)

A partial derivative with respect to ξi is

∂h
(
~w, b, ~α, ~ξ, ~r

)
∂ξi

= Ci − ri − αi = 0 . (D.4)
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After substitution of above equations to d (~α,~r) we get

d (~α,~r) = 1
2
m∑
i=1

(
n∑
j=1

αjyjxji

)(
n∑
k=1

αkykxki

)
−

n∑
i=1

αiyi

(
m∑
j=1

wjxij + b

)
+

n∑
i=1

αi (1 + ϕi) + Ci
n∑
i=1

ξi

−
n∑
i=1

αiξi −
n∑
i=1

riξi

(D.5)

d (~α,~r) = 1
2
m∑
i=1

n∑
j=1

n∑
k=1

αkαjykyjxkixji −
n∑
i=1

αiyi
m∑
j=1

wjxij

−b
n∑
i=1

αiyi +
n∑
i=1

αi (1 + ϕi)
(D.6)

d (~α,~r) = 1
2

n∑
j=1

n∑
k=1

αkαjykyj
m∑
i=1

xjixki

−
n∑
i=1

αiyi
m∑
j=1

xij
n∑
k=1

αkykxkj +
n∑
i=1

αi (1 + ϕi)
(D.7)

d (~α,~r) = 1
2

n∑
j=1

n∑
k=1

αkαjykyj
m∑
i=1

xjixki

−
n∑
i=1

n∑
k=1

αkαiykyi
m∑
j=1

xijxkj +
n∑
i=1

αi (1 + ϕi)
(D.8)

d (~α,~r) = −1
2

n∑
i=1

n∑
k=1

αkαiykyi

m∑
j=1

xijxkj +
n∑
i=1

αi (1 + ϕi) . (D.9)

The dual form is
OP 23.

max
~α,~r

d (~α,~r) =
n∑
i=1

αi (1 + ϕi)−
1
2

n∑
i=1

n∑
k=1

αkαiykyi

m∑
j=1

xijxkj (D.10)

subject to
n∑
i=1

αiyi = 0 (D.11)

Ci = ri + αi (D.12)

αi ≥ 0 (D.13)

ri ≥ 0 (D.14)

for i ∈ {1, . . . , n}.

D.2 Derivation of SMO α2 Bounds for ϕ-SVC
We will derive bounds for α2, (III.22), (III.23), (III.24), (III.25):

U ≤ α2 ≤ V , (D.15)

where for y1 6= y2
U = max

(
0, αold2 − α

old
1

)
, (D.16)

V = min
(
C2, C1 − αold1 + αold2

)
, (D.17)

for y1 = y2
U = max

(
0, αold1 + αold2 − C1

)
, (D.18)

V = min
(
C2, α

old
1 + αold2

)
. (D.19)
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We present two derivations: geometrical and analytical one.

Geometrical Proof. The equality equation of SVM is

α2 = αold
1 y1y2 + αold

2 − α1y1y2 . (D.20)

The line crosses left side of the square, where α1 = 0. The line crosses the right side of the
square, where α1 = C1. When y1 = y2, then y1y2 = 1, after substituting it to (D.20) we get

p : α2 = αold1 + αold2 − α1 . (D.21)

The line p has a negative slope equals to -1, Fig. D.1(a).

Figure D.1: Visualization of the constraints. We can see a line p with the negative slope in a)
and the positive one in b)

After substituting α1 = 0 and α1 = C1, we get values of points of crossings of p line with
lines α1 = 0 and α1 = C1:

α2 = αold1 + αold2 (D.22)

and
α2 = αold1 + αold2 − C1 . (D.23)

Because crossing points have to lie in the square we get the following bounds for α2

U = max
(
0, αold1 + αold2 − C1

)
, (D.24)

V = min
(
C2, α

old
1 + αold2

)
. (D.25)

When y1 6= y2, then y1y2 = −1, after substituting it to (D.20)

p : α2 = −αold1 + αold2 + α1 . (D.26)

The line p has a positive slope equals to 1, Fig. D.1(b). After substituting α1 = 0 and α1 = C1,
we get values of points of crossings of p line with lines α1 = 0 and α1 = C1:

α2 = −αold1 + αold2 (D.27)

and
α2 = −αold1 + αold2 + C1 . (D.28)

Because crossing points have to lie in the square we get the following bounds for α2

U = max
(
0, αold2 − α

old
1

)
, (D.29)

V = min
(
C2, C1 − αold1 + αold2

)
. (D.30)

Analytical Proof. We have an inequality for α1

0 ≤ α1 ≤ C1 (D.31)
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and a line p
α1y1 + α2y2 = αold1 y1 + αold2 y2 , (D.32)

after transformation
α1 = αold1 + y1y2α

old
2 − y1y2α2 , (D.33)

after substituting it to the inequality we get

0 ≤ αold1 + y1y2α
old
2 − y1y2α2 ≤ C1 . (D.34)

When y1 = y2, then y1y2 = 1, so

0 ≤ αold1 + αold2 − α2 ≤ C1 . (D.35)

Consider now the first part of the inequality,

αold1 + αold2 − α2 ≥ 0 (D.36)

α2 ≤ αold1 + αold2 . (D.37)

Because the parameter α2 has to fulfill the inequality α2 ≤ C2, so the upper bound for α2 is

V = min
(
C2, α

old
1 + αold2

)
. (D.38)

Considering the second part of the inequality,

αold1 + αold2 − α2 ≤ C1 (D.39)

α2 ≥ αold1 + αold2 − C1 . (D.40)

Because the parameter α2 has to fulfill the inequality α2 ≥ 0, so the lower bound for α2 is

U = max
(
0, αold1 + αold2 − C1

)
. (D.41)

When y1 6= y2, then y1y2 = −1, so

0 ≤ αold1 − α
old
2 + α2 ≤ C1 . (D.42)

Consider now the first part of the inequality,

αold1 − α
old
2 + α2 ≥ 0 (D.43)

α2 ≥ αold2 − α
old
1 . (D.44)

Because the parameter α2 has to fulfill the inequality α2 ≥ 0, so the lower bound for α2 is

U = max
(
0, αold2 − α

old
1

)
. (D.45)

Considering the second part of the inequality,

αold1 − α
old
2 + α2 ≤ C1 (D.46)

α2 ≤ C1 + αold2 − α
old
1 . (D.47)

Because the parameter α2 has to fulfill the inequality α2 ≤ C2, so the upper bound for α2 is

V = min
(
C2, C1 − αold1 + αold2

)
. (D.48)

84



Margin Knowledge Per Example D.3 Derivation of the SMO Solution

D.3 Derivation of the SMO Solution

We have to find new values of parameters in SMO step for SVC. First we compute αunc
2

αunc
2 = αold

2 + y2 (E1 − E2)
κ

(D.49)

and then

α2 =


V, if αnew,unc

2 > V,
αnew,unc

2 , if U ≤ αnew,unc
2 ≤ V,

U, if αnew,unc
2 < U

(D.50)

αnew
1 = αold

1 + y1y2
(
αold

2 − αnew
2

)
. (D.51)

For simplicity of the proof we use a notation

K (~xi, ~xj) ≡ Kij , (D.52)

where i, j = 1, 2, and we define

fi =
n∑
j=1

yjαjKij (D.53)

Ei = fi − yi =
n∑
j=1

yjαjKij − yi (D.54)

vi =
n∑
j=3

yjαjKij = fi −
2∑
j=1

yjαjKij (D.55)

for i = 1 or i = 2, where n is the number of all vectors.
The objective function has a form

f (α1, α2) = α1 + α2 − 1
2K11α

2
1 − 1

2K22α
2
2−

y1y2K12α1α2 − y1α1v1 − y2α2v2 + const .
(D.56)

After substituting sij = yiyj for i, j = 1, 2 for simplification of notation we get

f (α1, α2) = α1 + α2 − 1
2K11α

2
1 − 1

2K22α
2
2−

s12K12α1α2 − y1α1v1 − y2α2v2 + const .
(D.57)

The linear constraint has a form:
n∑
i=1

yiαi = 0. It must be fulfilled with new values of α1 and α2

y1α1 + y2α2 = y1α
old
1 + y2α

old
2 = const . (D.58)

Dividing above by y1 and noticing that y1y2 = y1/y2 we get

α1 + y1y2α2 = αold
1 + y1y2α

old
2 , (D.59)

after simplification
α1 + s12α2 = αold

1 + s12α
old
2 . (D.60)

Introducing notation
γ = αold

1 + s12α
old
2 (D.61)

we have
α1 + s12α2 = γ (D.62)

α1 = γ − s12α2 . (D.63)

The above equation shows how to get α1 from α2. After substituting above to the objective

85



D.3 Derivation of the SMO Solution Margin Knowledge Per Example

function we get

f (α1, α2) = γ − s12α2 + α2 − 1
2K11 (γ − s12α2)2 − 1

2K22α
2
2−

s12K12 (γ − s12α2)α2 − y1 (γ − s12α2) v1 − y2α2v2 + const .
(D.64)

After transformations

f (α1, α2) = γ − s12α2 + α2 − 1
2K11

(
γ2 − 2γs12α2 + s2

12α
2
2
)
− 1

2K22α
2
2−

s12K12 (γ − s12α2)α2 − y1 (γ − s12α2) v1 − y2α2v2 + const (D.65)

f (α1, α2) = γ − s12α2 + α2 − 1
2K11γ

2 +K11γs12α2 − 1
2K11α

2
2 − 1

2K22α
2
2

−s12K12 (γ − s12α2)α2 − y1 (γ − s12α2) v1 − y2α2v2 + const (D.66)

f (α1, α2) = γ − s12α2 + α2 − 1
2K11γ

2 +K11γs12α2 − 1
2K11α

2
2 − 1

2K22α
2
2

−s12K12γα2 +K12α
2
2 − y1γv1 + y2α2v1 − y2α2v2 + const .

(D.67)

Now we compute a partial derivate with respect to α2

∂f(α2)
∂α2

= 1− s12 +K11γs12 −K11α2 −K22α2
−s12K12γ + 2K12α2 + y2v1 − y2v2 .

(D.68)

We are looking for stationary points by equating the derivative to zero

∂f(α2)
∂α2

= 1− s12 +K11γs12 −K11α2 −K22α2−
s12K12γ + 2K12α2 + y2v1 − y2v2 = 0

(D.69)

1− s12 +K11γs12 −K11α2 −K22α2
−s12K12γ + 2K12α2 + y2v1 − y2v2 = 0 .

(D.70)

Dividing both sides by y2 we get

y2 − y1 +K11γy1 −K11y2α2 −K22y2α2−
y1K12γ + 2K12y2α2 + v1 − v2 = 0 .

(D.71)

Adding the new superscript for α2 we get

y2 − y1 +K11γy1 −K11y2α
new
2 −K22y2α

new
2 −

y1K12γ + 2K12y2α
new
2 + v1 − v2 = 0 .

(D.72)

Substituting for γ, v1 i v2

y2 − y1 +K11 (α1 + s12α2) y1 −K11y2α
new
2 −K22y2α

new
2

−y1K12 (α1 + s12α2) + 2K12y2α
new
2 + f1 − y1α1K11 − y2α2K12

−f2 + y1α1K12 + y2α2K22 = 0
(D.73)

y2 − y1 +K11α1y1 +K11y2α2 −K11y2α
new
2 −K22y2α

new
2

−y1K12α1 −K12y2α2 + 2K12y2α
new
2 + f1 − y1α1K11 − y2α2K12

−f2 + y1α1K12 + y2α2K22 = 0
(D.74)

y2 − y1 +K11y2α2 −K11y2α
new
2 −K22y2α

new
2

−K12y2α2 + 2K12y2α
new
2 + f1 − y2α2K12

−f2 + y2α2K22 = 0
(D.75)

y2 − y1 − y2α
new
2 (K11 +K22 − 2K12) + y2α2(K11 +K22 − 2K12)

+f1 − f2 = 0 .
(D.76)

Introducing notation κ = K11 +K22 − 2K12 we get

y2 − y1 − y2α
new
2 κ+ y2α2κ+ f1 − f2 = 0 . (D.77)
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Dividing both sides by y2 and κ

αnew
2 = α2 + y2 (E1 − E2)

κ
. (D.78)

After all we have to limit αnew
2 , so it will lie in [U , V ].

D.4 Derivation of the SMO solution for ϕ-SVC

Compare it with D.3. We have a new objective function

f (α1, α2) = α1ϕ1 + α2ϕ2 + fsmo (α1, α2) , (D.79)

where fsmo is the f function for SMO from D.3. After substituting

α1 = γ − y1y2α2 , (D.80)

where
γ = αold

1 + y1y2α
old
2 (D.81)

we get
f (α1, α2) = ϕ1γ − ϕ1y1y2α2 + α2ϕ2 + fsmo (α1, α2) . (D.82)

After differentiating we get

∂f (α1, α2)
∂α2

= ϕ2 − ϕ1y1y2 + ∂fsmo (α1, α2)
∂α2

. (D.83)

And a solution is
αnew

2 = α2 + y2 (E1 − E2)
κ

, (D.84)

where

Ei =
n∑
j=1

yjαjKij − yi − yiϕi (D.85)

κ = K11 +K22 − 2K12 .

D.5 Derivation of ε-SVR Reformulation as ϕ-SVC

OP 24.
min

~wr,br, ~ξr, ~ξ∗r

f
(
~wr, br, ~ξr, ~ξ∗r

)
= ‖ ~wr‖2 + Cr

n∑
i=1

(
ξir + ξ∗ir

)
(D.86)

subject to
yir − g (~ai) ≤ ε+ ξir (D.87)

g (~ai)− yir ≤ ε+ ξi∗r (D.88)
~ξr ≥ 0 (D.89)
~ξ∗r ≥ 0 (D.90)

for i ∈ {1, . . . , n}, where
g
(
~~ai
)

= ~wr · ~ai + br . (D.91)

OP 25.

min
~wr,br, ~ξr, ~ξ∗r

f
(
~wr, br, ~ξr, ~ξ∗r

)
= ‖ ~wr‖2 + Cr

2n∑
i=1

(
ξir

)
(D.92)
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subject to
g (~ai) ≥ yir − ε− ξir (D.93)

g (~ai) ≤ ε+ yir + ξi∗r (D.94)
~ξr ≥ 0 (D.95)
~ξ∗r ≥ 0 (D.96)

for i ∈ {1, . . . , n}, where
g
(
~~ai
)

= ~wr · ~ai + br . (D.97)

OP 26.

min
~wr,br, ~ξr, ~ξ∗r

f
(
~wr, br, ~ξr, ~ξ∗r

)
= ‖ ~wr‖2 + Cr

2n∑
i=1

(
ξir

)
(D.98)

subject to
yig (~ai) ≥ yir − ε− ξir (D.99)

yig (~ai) ≥ −ε− yir − ξi∗r (D.100)
~ξr ≥ 0 (D.101)

for i ∈ {1, . . . , n}, where
g
(
~~ai
)

= ~wr · ~ai + br . (D.102)

OP 27.

min
~wr,br, ~ξr, ~ξ∗r

f
(
~wr, br, ~ξr, ~ξ∗r

)
= ‖ ~wr‖2 + Cr

2n∑
i=1

(
ξir

)
(D.103)

subject to
yig (~ai) ≥ yicyir − ε− ξir (D.104)

~ξr ≥ 0 (D.105)

for i ∈ {1, . . . , n}, where
g
(
~~ai
)

= ~wr · ~ai + br . (D.106)

OP 28.

min
~wr,br, ~ξr, ~ξ∗r

f
(
~wr, br, ~ξr, ~ξ∗r

)
= ‖ ~wr‖2 + Cr

2n∑
i=1

(
ξir

)
(D.107)

subject to
yig (~ai) ≥ 1 + yicy

i
r − ε− ξir − 1 (D.108)

~ξr ≥ 0 (D.109)

for i ∈ {1, . . . , 2n}, where
g
(
~~ai
)

= ~wr · ~ai + br . (D.110)

And we have

wc1i =
2n∑
j=1

yjαjaij =
n∑
j=1

αjaij −
2n∑
j=n

α∗jaij (D.111)

wc1i =
2n∑
j=1

yjαjaij =
n∑
j=1

αjaij −
2n∑
j=n

α∗jaij =
n∑
j=1

(
αj − α∗j

)
aij . (D.112)
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Appendix E

Implementation Techniques Based
on KKT Conditions

E.1 The Proof of OP 19

Proof. Maximization of

f
(
~w, b, ~ξ

)
= ‖~w‖2 + C

n∑
i=1

ξi −
n∑

i=1
i/∈P

αi (yih (~xi)− 1 + ξi)−
n∑

i=1
i/∈P

(C − αi) ξi (E.1)

with constraints ycih ( ~xci) ≥ 1− ξci + ϕi, ξci ≥ 0
for i ∈ {1, . . . , p}, where h (~xi) = ~w · ~xi + b for i ∈ {1, . . . , n}.

L = ‖~w‖2 + C
n∑
i=1

ξi −
n∑

i=1
i/∈P

αi (yih (~xi)− 1 + ξi)−
n∑

i=1
i/∈P

(C − αi) ξi (E.2)

−
p∑
i=1

αi (yih (~xi)− 1 + ξi)−
p∑
i=1

riξi (E.3)

with constraints
αi ≥ 0 (E.4)

ri ≥ 0 (E.5)

for i ∈ {1, . . . , p}. Partial derivatives are

∂L

∂b
=

p∑
i=1

yiαi +
n∑

i=1
i/∈C

yiαi = 0 (E.6)

∂L

∂wi
= wi −

n∑
j=1

αjyjxij = 0 (E.7)

wi =
n∑
j=1

αjyjxij . (E.8)
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E.2 Derivation of SMO Without Offset Implementation Techniques Based on KKT Conditions

E.2 Derivation of SMO Without Offset
We have to find new values of parameters in SMO step for SVC. We will optimize one parameter
per step. For simplicity of the proof we use a notation

K (~xi, ~xj) ≡ Kij , (E.9)

where i, j = 1, 2, and we define

Ei =
n∑
j=1

yjαjKij − yi (E.10)

v1 =
n∑
j=2

yjαjKij =
n∑
j=1

yjαjK1j − y1α1K11 . (E.11)

The objective function has a form

W (α1) = α1 − 1
2K11α

2
1 − y1α1v1 + const . . (E.12)

Now we compute a partial derivate with respect to α1

∂W (α1)
∂α1

= 1−K11α1 − y1v1 . (E.13)

We are looking for stationary points by equating the derivative to zero

∂W (α1)
∂α1

= 1−K11α
new
1 − y1v1 = 0 (E.14)

1−K11α
new
1 − y1

n∑
j=1

yjαjK1j + α1K11 = 0 (E.15)

αnew
1 = α1 −

y1E1
K11

. (E.16)

Then we have to bound αnew
1 :

0 ≤ αnew
1 ≤ C1 . (E.17)

E.3 Derivation of SMO Without Offset for ϕ-SVC
Compare it with E.2. We have a new objective function

f (α1) = α1ϕ1 + fsmo (α1, α2) , (E.18)

where fsmo is the f function for SMO from E.2. After differentiating we get

∂f (α1)
∂α1

= ϕ1 + ∂fsmo (α1)
∂α1

. (E.19)

And a solution is
αnew

1 = α1 −
y1E1
K11

, (E.20)

where
Ei =

n∑
j=1

yjαjKij − yi − yiϕi . (E.21)
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Appendix F

Applications: Order Execution
Strategies

F.1 Proof of Thm. V.2.1
Proof. The proof is

VWAP0 =
∑m
i=1 (VWAP (∆ti) + ε1 (∆ti)) (v0 (r (∆ti) + ε2 (∆ti)))

v0
(F.1)

VWAP0 =
m∑
i=1

(VWAP (∆ti) + ε1 (∆ti)) (r (∆ti) + ε2 (∆ti)) (F.2)

VWAP0
VWAP

− 1 = v
∑m
i=1 (VWAP (∆ti) + ε1 (∆ti)) (r (∆ti) + ε2 (∆ti))∑m

i=1 VWAP (∆ti) v (∆ti)
− 1 = (F.3)

=
∑m
i=1 (VWAP (∆ti) + ε1 (∆ti)) (r (∆ti) + ε2 (∆ti))∑m

i=1 VWAP (∆ti) r (∆ti)
− 1 = (F.4)

=
∑m
i=1 ε1 (∆ti) r (∆ti)∑m

i=1 VWAP (∆ti) r (∆ti)
+
∑m
i=1 ε2 (∆ti)VWAP (∆ti)∑m
i=1 VWAP (∆ti) r (∆ti)

(F.5)

+
∑m
i=1 ε1 (∆ti) ε2 (∆ti)∑m

i=1 VWAP (∆ti) r (∆ti)
. (F.6)
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Notation and Symbols

Miscellaneous
|A| the cardinality of a finite set A, i.e., the number of elements in the set A,
·Dot product of two vectors, sometimes it is written with additional parentheses, for example

for two vectors: ~u and ~v, the dot product is ~u · ~v or (~u · ~v),
~v ≥ ~w For two n dimensional vectors ~v and ~w, it means that for all i = 1...n vi ≥ wi,
~v � ~w For two n dimensional vectors ~v and ~w, it means that for all i = 1...n vi > wi,
ρ (A) the rank of a matrix A,
~wir When a vector has an index in the subscript, the coefficient index is placed in the

superscript, the example means the i-th coefficient of the ~wr,

Optimization theory
∗ an asterisk as a superscript in optimization theory denotes a solution of the optimization

problem,
Order Execution Strategies

VWAP it is a symbol for a volume weighted average price,

Regression Based on Binary Classification
CEMV a configuration of essential margin vectors,
EMV a set of essential margin vectors,
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Abbreviations

δ-SVR δ support vector regression,

ν-SVC ν support vector classification,

ν-SVM ν support vector machines,

ε-SVR ε-insensitive support vector regression,

ϕ-SVC ϕ support vector classification,

C-SVC C support vector classification,

C-SVM C support vector machines,

CM capacity minimization,

DJIA Dow Jones Industrial Average,

ERM empirical risk minimization,

HoA heuristic of alternatives,

KKT Karush-Kuhn-Tucker,

LS least squares,

MSE mean squared error,

NASDAQ National Association of Securities Dealers Automated Quotations,

OMS order management system,

RBF radial basis function,

RMSE root mean squared error,

RSVM reduced support vector machines,

SMO sequential minimal optimization,

SMS Sequential Multidimensional Subsolver,

SRM structural risk minimization,

SVC support vector classification,

SVM support vector machines,
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Abbreviations Abbreviations

SVR support vector regression,

TLS total least squares,

TWAP time-weighted average price,

VC Vapnik-Chervonenkis,

VWAP volume-weighted average price,
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Glossary

Machine Learning
a binary classification problem A learning problem with binary outputs,
A set of hypotheses or a hypothesis space, a set or class of candidate functions,
batch learning All the data are given to the learner at the start of learning,
decision function A solution for the classification problem,
generalization The ability of a hypothesis to correctly classify data not in the training set,
learning algorithm The algorithm which takes the training data as input and selects a

hypothesis from the hypothesis space,
multi-class classification A learning problem with a finite number of categories,
overfit Hypotheses that become too complex in order to become consistent are said to

overfit,
regression A learning problem with real-valued outputs,
solution of the learning problem The estimate of the target function which is learned

or output by the learning algorithm,
supervised learning Learning when examples are input/output pairs,
target function When a function from inputs to outputs exists it is referred to as the

target function,
training data A set of examples of input/output functionality,

Order execution strategies
broker An individual or firm that charges a fee or commission for executing buy and sell

orders submitted by an investor,
DJIA DJIA, known as the "Dow". One of the main US share indices which monitors the

movement of 30 blue chip companies traded on the New York Stock Exchange. The
index is a simple average of the share prices, not allowing for market capitalization,

index In the stock market, an index is a device that measures changes in the prices of a
basket of shares, and represents the changes using a single figure. The purpose is to
give investors an easy way to see the general direction of the market or shares in the
index,

NASDAQ National Association of Securities Dealers’ Automated Quotations System. The
first electronic stock market, which uses computers and telecommunications to trade
shares rather than a traditional trading floor,

NASDAQ 100 index An index composed of the 100 largest, most actively traded U.S.
companies listed on the Nasdaq stock exchange. This index includes companies from
a broad range of industries with the exception of those that operate in the financial
industry, such as banks and investment companies,

order The instruction, by a customer to a brokerage, for the purchase or sale of a security
with specific conditions,

Order Management System (OMS) An electronic system developed to execute secu-
rities orders in an efficient and cost-effective manner. Brokers and dealers use OMSs
when filling orders for various types of securities and are able to track the progress of
each order throughout the system,

security A financial asset such as a share or bond of a company, government body or other
organization,
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Glossary Glossary

stock exchange An electronic screen-based or trading floor-based market where securities
are bought and sold,

symbol An identity code, or ticker, allocated to a company by the exchange on which its
stock is traded. Usually the code is an abbreviation of the company’s name,

tick The minimum upward or downward movement in the price of a security or a futures
or options contract,

trade A transaction involving buying or selling a security or commodity,
trading session The period from when a market or exchange opens until it closes,
trading volume The total number of securities or contracts traded in a given period,
Volume Weighted Average Price A measure of the price at which most of trading took

place during some period. It is calculated as the value of trades divided by the volume over a
given period,
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