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Abstract. 
We present a novel parallel 3-D model of tumor 
proliferation. To simulate the growth dynamics of normal, 
cancerous and vascular tissues we use a hybrid method 
integrating cellular automata (CA) with N-body off-grid 
paradigm, so called, complex automata model (CxA). The 
interacting particles with dynamically evolving attributes 
may represent a single cell (cancerous or normal) or a 
fragment of blood vessel. Therefore, to mimic realistic 
tumor masses, huge ensembles of particles have to be 
simulated on multi-core processor systems. There exist 
many methods widely used for parallelization of classical 
N-body dynamics. However, they cannot be applied directly 
in our CxA model, because the evolution of tumor system is 
controlled by additional processes such as: cell life-cycle, 
nutrients and TAFs (tumor angiogenesis factors) diffusion 
and blood flow. These processes influence physical states of 
particles, e.g., their type, size and ability for 
proliferation/annihilation. We show that despite these 
difficulties, particle model can be efficiently implemented 
on small multi-core processor systems achieving almost 
linear speedup for as many as 8 threads and speedup of 
about 30 on 64 threads UltraSPARC T2 processor. We show 
that this model framework allows for simulating up to 1 
million particles in a reasonable time using modest 
computer resources. 
 
1. INTRODUCTION 
 
Complex automata (CxA) paradigm is a generalization of 
cellular automata (CA) and is originally defined [1,2] as a 
scalable hierarchical aggregation of CA and agent-based 
models. The agents represent sub-systems operating on their 
typical spatial and temporal scales. This CxA can be an 
interesting framework for the development of the multiple 
scale models.  

In particular, CxA can be represented by interacting 
particles whose dynamics are governed by both the 
Newtonian laws of motion and the CA-like evolution of 
particle states. Such the hybridization of N-body simulation 
with CA principles integrates the advantages of both 

simulation paradigms: the strong generalization ability (CA) 
on the one hand, and reconstruction of realistic dynamics 
(N-body) on the other.  

As shown in [3,4], by using N-body methods one can 
model - depending on the definition of the particle - the 
evolution of complex phenomena occurring in multiple 
scales: from atoms to crowd dynamics. By integrating 
various particle methods such as molecular dynamics, 
dissipative particle dynamics (or its other clones) and mass-
spring systems, one can simulate the realistic evolution of 
multi-component complex systems from, e.g., complex 
fluids [5], microscopic blood flow [6] to scenes from 
computer games [7]. On the other hand, the CA rules can 
mimic the processes representing other types of local 
�interactions� than purely mechanical ones, e.g., involving 
some environmental factors or specific individual properties 
of particles. In response, the particles on their own can 
change their attributes, proliferate, grow, decay or 
annihilate. The feedback between particle attributes and 
particle dynamics may result in complex emergent behavior 
of the entire multi-scale CxA system. The flexibility and 
simplicity of this framework allow us for attacking the most 
complex problems including the problem of cancer 
proliferation. Typically, growth of a solid tumor consists of 
three stages: avascular growth, angiogenesis, and vascular 
growth (e.g., [8]). In the earliest stage, the tumor develops 
due to nutrients (e.g. oxygen) diffusion through its surface. 
As shown in Figure 1a, in angiogenic phase, some of the 
cells of avascular tumor mass produce and release proteins 
and other chemical species called tumor angiogenic factors 
(TAFs). The tumor angiogenic factors diffuse throughout 
the tissue, and, upon arrival to the blood vessels, they 
trigger a cascade of events which stimulates the growth of 
vasculature towards the tumor. In vascular growth stage the 
tumor has access to unlimited resources of oxygen and other 
nutrients, which allow to its fast growth. Moreover, through 
the blood vasculature, the tumor secretes cancerogenic 
material forming metastases. Thus, whereas in the avascular 
phase tumors are basically harmless, once they become 
vascular they are potentially fatal. Computer modeling 
could allow for answering many principal questions 
concerning the effects of prescribed chemotherapy or testing 
new drugs to control the process of tumor growth in all its 
phases [9,10]. 



 There exist many mathematical models of tumor 
progression [11-14]. These models fall into four categories: 
(a) continuum models that treat the endothelial cell (EC) 
and chemical species densities as continuous variables that 
evolve according to a reaction-diffusion system, (b) 
mechano-chemical models that incorporate some of the 
mechanical effects of EC-ECM (extracellular matrix) 
interactions (c) discrete, cellular automata or agent based 
models in which cells are treated as units, which grow and 
divide according to prescribed rules (d) hybrid multiscale 
models involving processes from micro-to-macroscale. 
Neglecting all microscopic and mesoscopic biological and 
biophysical processes, tumor growth is purely mechanical 
phenomenon. It involves dissipative interactions between 
the main actors: normal, cancerous tissues and vascular 
network. Due to the effect of tumor directional progression, 
the surrounded tissue, vasculature and tumor on its own 
undergo continuous process of remodeling. This kind of 
tumor dynamics could not be reconstructed in the 
framework of existing models while just tumor remodeling 
is responsible for its heterogeneity, which influences the 
drug dosage/rate in chemotherapy. 

In [15] we present the concept of a novel modeling 
framework, which is based on particle dynamics and the 
model of complex automata. In this model a particle 
represents a single cell in ECM envelope. However, this 
assumption becomes very computationally demanding for 
modeling tumors of realistic sizes. Tumor of 1 mm in 
diameter consists of 105-106 cells depending on the size of 
tumor cell. To model tumor of that size together with its 
closest environment (normal cells), the dynamics of at least 
106-107 particles have to be simulated. Notwithstanding, to 

simulate realistic tumor sizes the efficient parallel models 
exploiting multiprocessor systems are badly needed. 

The particle system representing growing tumor is 
very different than standard N-body systems such as 
molecular dynamics (MD). Due to cell life-cycle (see 
Figure 1b) the particles (cells) can proliferate, change their 
sizes and annihilate. Additionally they have attributes, 
which evolve according to the rules of cellular automata, 
and are coupled with particle dynamics. Moreover, the 
values of attributes depend on concentration fields of 
oxygen and tumor angiogenic factors. Thus, the process of 
parallelization is expected to be more complicated than in 
standard particle codes. In this paper we present the 
framework of parallel 3-D model of tumor growth, which 
bases on particle dynamics. The model is optimized for 
multi-core CPUs rather than for massively parallel systems 
consisting of many CPUs.   

The paper is structured as follows. In the following 
section we present a brief description of the particle tumor 
model. In section no.3 we describe its parallel 
implementation, computer timings and preliminary results. 
Finally, we discuss the prospects of the model and 
summarize the conclusions. 
 
2.  COMPLEX AUTOMATA MODEL 
 
Here we give only a brief description of our complex 
automata model of tumor progression based on particle 
dynamics. More details can be found in [15].  

We assume that a fragment of tissue, is made of a set 
of particles ΛN={Oi: O(ri,vi,ai), i=1,�,N} where: i - particle 
index; N - the number of particles, ri,vi,ai - particle position, 
velocity and attributes, respectively. Each particle represents 
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Figure 1 The diagrams of a) the model of tumor induced angiogenesis b) the cell life-cycle. 



a single cell with a fragment of ECM matrix. The vector of 
attributes ai is defined by the particle type {tumor cell (TC), 
normal cell (NC), endothelial cell (EC)}, cell life-cycle state 
(see Figure 1b) {newly formed, mature, in hypoxia, after 
hypoxia, apoptosis, necrosis}, cell size, cell age, hypoxia 
time, concentrations of k=TAF, O2 (and others) and total 
pressure exerted on particle i from its closest neighbors. The 
particle system is confined in the cubical computational box 
with a constant external pressure. For the sake of simplicity 
the vessel is constructed of tube-like �particles� � EC-tubes 
� made of two particles connected by a rigid spring (see 
Figure 2a). We define three types of interactions: particle-
particle, particle-tube, and tube-tube. The forces between 
particles mimic both mechanical repulsion from squashed 
cells and attraction due to cell adhesiveness and depletion 
interactions cause by both ECM matrix and the cell. We 
postulate the heuristics - particle interaction potential Ω(dij) 
(Figure 2b) - in the following form:  
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where |rij| is the distance between particles while ri and rj 
are their radiuses. 

We assume that the interactions between spherical 
particles and EC-tube particles have similar character. 
However, as shown in Figure 3a, additional rules have to be 
introduced to enable appropriate growth of the vascular 
network. The particle dynamics is governed by the 
Newtonian laws: 
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where mi is the mass of particle i while λ is a friction 
coefficient.  

As shown in Figure 1b, both normal and tumor cells 
change their states from new to apoptotic (or necrotic). 
After mitosis, well oxygenated cells of certain age and size 
split into two daughter cells with dMIN diameters. The cell 
diameter increases proportionally to oxygen concentration 
up to dMAX. Finally, after given time period, the particles die 
due to programmed cell death (apoptosis). For oxygen 
concentration smaller than a given threshold, the living cell 
changes its state to hypoxia being the source of TAFs. The 
cells die and become necrotic if they remain in hypoxia state 
too long. We assume that at the beginning, the diameter of 
necrotic cell decreases twice and, after some time, the cell 
vanishes. This is contrary to apoptotic cells, which are 

rapidly digested by their neighbors or by macrophages. Both 
normal and tumor cells differ considerably in duration of the 
life cycle phases and, especially, in the period of time they 
can live in hypoxia. The hypoxic cancerous cells can stay 
alive a few orders of magnitude longer than normal cells.  

The life-cycle for EC-tubes is different. They can 
grow both in length and in diameter. Reduced blood flow, 
the lack of VEGF (vascular endothelial growth factor), 
dilation, perfusion and solid stress exerted by the tumor can 
cause their rapid collapse. Because the EC-tube is a cluster 
of EC cells, its division onto two adjoined tubes does not 
represent the process of mitosis but is a computational 
metaphor of vessel growth. Unlike normal and tumor cells, 
the tubes can appear as tips of newly created capillaries 
sprouting from existing vessels. The new sprout is formed 
when the TAFs concentration exceeds a given threshold and 
its growth is directed to its local gradient.  

The distribution of hematocrit is the source of 
oxygen, while the distribution of tumor cells in hypoxia is 
the source of TAFs. We assume that the cells of any type 
consume oxygen with the rate depending on both cell type 
and its current state, while TAFs are absorbed by EC-tubes 
only. TAFs are washed out from the system due to blood 
flow.  

Because diffusion of oxygen and TAFs through the 
tissue is many orders of magnitude faster than the process of 
tumor growth, we assume that both the concentrations and 
hydrodynamic quantities are in steady state in the time-scale 
defined by the time-step of numerical integration of 
equations of motion. On the other hand, the blood 
circulation is slower than diffusion but still faster than 
mitosis cycle. These facts allow for employing fast 
approximation procedures for both calculation of blood flow 
rates in capillaries and solving reaction-diffusion equation 
(see [15]). The main procedures invoked in a single time 
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Figure 2 a) Tube-like particle made of two spherical �vessel 

particles�. b) Ω (dij) potential form. 



step are shown in Figure 3b. After initialization phase, in 
subsequent time-steps we calculate forces acting on 
particles, new particle positions, the diffusion of active 
substances (nutrients, TAFs, pericytes), the intensity of 
blood flow in the vessels and the states of individual cells 
triggered by previous three factors and constrained by time 
clocks of individual cells. All of these modifications of cell 
states may result in cell mitosis or its death. They can also 
change some cell functions (e.g. those under hypoxia) their 
size and environmental properties (e.g., cancerous cells can 
secrete acid to eliminate neighboring normal cells).   

 
3. PARALLEL IMPLEMENTATION 

 
3.1. Algorithms And Data Structures 
 
Classical N-body codes, such as molecular dynamics (MD), 
simulate evolution of a particle system confined in a 
periodic cube by integrating numerically Newtonian 
equations [16]. The single time-step consists of two 
principal procedures: computation of forces acting on each 
particle and shifting them according to the total momentum 
calculated from Eqs.2. From the point of view of efficient 
computations, the linear computational complexity O(N) of 
the algorithm is the most important requirement. 
Fortunately, both the particle interactions and 
approximation kernel are short-ranged. However, both the 
calculation of forces and approximate procedure used for 
solving diffusion equation, require finding all the pairs of 
particles in the nearest neighborhood. For short-range 
interactions, e.g., given by Eq.1, the forces can be computed 
using fast O(N) method exploiting alternately Hockney or 
Verlet algorithms [16]. As shown in Figure 4a, the 

computational box is divided onto cubic sub-boxes with 
edges equal to the interaction range. As demonstrated in 
Figure 4a, the particle located in a given sub-box interacts 
with other particles located in this sub-box and in adjacent 
sub-boxes. Of course, many other approaches are possible 
both for serial and parallel implementations [17].  

For modeling tumors of realistic sizes the dynamics 
of 105-107 particles (normal, cancerous and EC-tube cells) 
have to be simulated by exploiting the power of nowadays 
multi-core CPUs, multi-processor systems and by using 
optimized N-body parallel codes. Unfortunately, the particle 
system representing our tumor model is very different than 
standard MD ensembles. Consequently, the process of code 
parallelization is expected to be more complicated [17-19]. 
The particles (cells) can proliferate, resize or annihilate. 
Moreover, they have additional attributes, which evolve 
according to the rules of cellular automata and influence the 
cells� dynamics. The attributes, in turn, depend on O2 and 
TAF concentration fields. This requires both solving 
reaction-diffusion equation and calculating the intensity of 
blood flow in capillary vessels. 

As shown in Figure 6, the computation of EC-tube 
particles interactions is the most critical component 
influencing computational efficiency. The length of EC-tube 
is considerably greater than its width, what involves 
considerably larger sizes of Hockney cells (sub-boxes) than 
those used for spherical particles. Moreover, the tubes can 
grow covering even 5 sub-boxes used for forces calculation 
between spherical cells. To overcome this problem we 
propose using instead of one, two separate data structures P 
and V, for storing spherical cells and EC-tubes, 
respectively. 
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Figure 3 a) Vessel-vessel interactions and vessel growth rules. b) The main procedures invoked in a single time-step. 



The P data structure is represented by 3-D array of Hockney 
cells with TC and NC particles, while V is a data structure 
consisting of the array of pointers to records representing 
EC-tubes and the additional 3-D array of cells used to 
compute particle-tube and tube-tube interactions. The cells 
in this array correspond to respective cells in P. Because 
vessel particle is long enough to cross several cells, it 
cannot be assigned to a single cell, as it is in Hockney 
algorithm. Instead, EC-tube is placed in a minimal cuboid 
composed of all the cells it crosses. This cuboid is enlarged 
then by one cell margin in each direction, covering the 
vessel particle together with its cut-off radius. We assume 
that the vessel particle belongs to all the cells forming this 
final cuboid (see Figure 5). 

Calculation of forces between particles is shared 
between three separate algorithms calculating: particle-
particle, particle-vessel, vessel-vessel interactions. For 
particle-particle forces we use standard Hockney algorithm. 
In case of particle-vessel computation, for each 
corresponding pair of cells cp, cv from P and V, 
respectively, particles from cp are tested against vessel 
particles from cv. If the distance between the pair is shorter 
then the cut-off radius, their interaction is calculated. 

The algorithm used for vessel-vessel computation 
exploits the fact that if two EC-tubes lie in a distance shorter 
than cut-off radius, there exists at least one cell in V 
containing both particles. This way, all interacting pairs can 
be found by iterating throughout all cells and making all-to-
all test for distance. However, a pair of particles 
representing two interacting EC-tubes can be found in many 
cells whereas it should be taken only once. To address this 
problem, we introduce ternary relation R (see Figure 5), 
which eliminates redundant interactions: 
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where: 
 
Ec is the set of EC-tubes, C is the set of cells in mesh, c.x, 
c.y, c.z are coordinates of cell c in 3-D array and 

e.mx = min(cell(e.p1).x, cell(e.p2).x), 
e.my = min(cell(e.p1).y, cell(e.p2).y), 
e.mz = min(cell(e.p1).z, cell(e.p2).z), 

 
where: e.p1 and e.p2 are two ends of EC-tube e, cell(p) is 
the cell to which point p belongs to.  
  
To reduce the number of cache misses, the cells in P do not 
contain pointers to particle records but whole records 
instead. Each cell is represented then by an array of fixed 
number of objects (see Figure 4b). All the TC and NC 
particles are allocated directly inside corresponding cells. 
This ensures that particles are always properly ordered in 
memory according to their positions for the price of greater 
memory consumption. This is because the cells have various 
numbers of particles and many records are empty. As 
particles move, they change the cells they belong to. 
Therefore, the arrays P and V are updated after each time-
step. In case of V, the cells are built from the beginning by 
using the array of EC-tube pointers located in V. Whereas 
for P, because particles are allocated inside the cells, 
changing location from one cell to the other means that the 
whole particle record must be moved to a different memory 
location. 
 
 
 

a b 

Figure 4 a) Domain decomposition used for forces calculation. b) Data structures storing spherical and vessel particles. 



 
 
This takes longer time in comparison to pointers operation 
in the standard approach. However, because of steady nature 
of particles dynamics in our model, such the situation does 
not occur too often. In fact, in our simulations the process of 
reordering particles requires less time than standard linked-
list procedure. The reason is, that in the former, the particles 
which do not change their cells need only �read� operation 
of their coordinates from the memory, while in the latter, for 
all the particles there is an additional �write� operation. 

During simulation, the number of spherical and EC-
tube particles can both increase due to mitosis and decrease 
as the result of apoptosis and necrosis. Information of newly 
formed and dead particles must be added and removed from 
the data structures. As doing this directly could cause 
problems with synchronization, three intermediate data 
structures are employed: for newborn particles in P, for new 
vessel particles in V and for indexes of dying vessel 
particles in V. Removing objects from P is done directly as 
it is cell-local operation, which does not impair other 
threads operation and never cause data structures to be 
rebuilt. Moving object from intermediate structures to P and 
V and removing object from V is done sequentially between 
separate time-steps. 
 

3.2. Speedups And Exemplary Results 
 
The tests were carried out on the SGI Altix XE 1300 cluster 
consisting of 256 SGI Altix XE 300 nodes and SPARC 
Enterprise T5120. Each Altix node consists of two four-core 
processors Intel Xeon 2.66 with 16 GB of RAM allowing 
for maximum 8 threads executed in parallel. The SPARC 
computer consists of eight-core 1.2 GHz UltraSPARC T2 
CPU capable of running in parallel eight threads per single 
core. It gives in total 64 threads per node executed 
concurrently on 32 GB of RAM. Our parallel algorithm is 
constructed for a single shared memory node and is 
implemented in C++ with OpenMP interface.  

We used domain decomposition approach both along 
one side of the computational box (each box slice was 
handled by one thread) and dividing the box onto sub-boxes 
of equal sizes (for 8 threads we have 2x2x2 grid of sub-
boxes, while for 64 4x4x4 grid of sub-boxes). 

To exploit the full power of multiprocessor system, 
the second level parallelism should be introduced based on 
massage-passing MPI interface. It would make the code 
extremely complicated and rigid for improvements. This 
would also extend the time for implementation and tests. 
Moreover, running the code on the large number of CPUs is 
usually restricted by system administrators and consumes 
much time and money. So, having in mind the shift in 
modern chip technology towards production of multiple-Figure 5 Graphical interpretation of relation (3). 

Figure 6 The diagram showing the shares of 
computational time used by various procedures (the 
evolution of 106 particles was simulated). 



SGI Altix XE 300 & SPARC Enterprise T5120 comparison SPARC Enterprise T5120 

core CPUs (empowered by GPU) we decided to meet this 
trend implementing the code open for both future 
improvements in the model and technological progress.  

As shown in Figure 7, the preliminary timings 
obtained for our parallel code are very encouraging. We got 
speed-up of about 7 on 8 threads CPU and about 30 on 64 
threads CPU simulating 106 particles. The timings could be 
better for more realistic vessel densities much lower than 
those considered in the test runs. 

The snapshots from simulations of tumor and its 
vasculature progression obtained for timing tests are shown 
in Figure 8. The tests were made for various particle 
ensembles. The initial scene consists of two straight parallel 
vessels, the cells representing normal tissue and a few 
cancerous cells located between the vessels. Because of 
increasing TAFs concentration, secreted by the tumor cells 
in hypoxia, we can observe newborn capillaries sprouting 
out from the source vessels. The vasculature expands and is 
continually remodeled due to tumor growth dynamics. The 
sprouts can bifurcate and merge creating anastomoses. The 
blood flow is stimulated by pressure difference in 
anastomosing vessels. Only productive vessels have a 
chance to survive if the TAFs concentration is sufficiently 
high. Unproductive vessels disappear after some time. Well 
oxygenated cells are colored blue (dark gray) while the cells 
in hypoxia are marked by shades of green (light gray). 

Necrotic cells are black.  
 

4. CONCLUSIONS 
 
The complex automata paradigm employing both particle 
dynamics and cellular automata rules can be used as a 
robust modeling framework, e.g., for developing realistic 
models of tumor growth as a result of emergent behavior of 
many interacting cells. Particularly, this framework targets 
principal problems involved with mechanical interactions 
between growing tumor, normal tissue, and expanding 
vascular network. The particle model of tumor growth can 
be easily extended by implementing more precise sub-
models of all the processes � known and unknown � 
responsible for tumor creation and proliferation.  

However, to simulate realistic tumor sizes, the 
number of particles should be greater than 1 million what 
require considerable computational resources to obtain the 
results in a reasonable time. Moreover, well known parallel 
algorithms, employed for simulating N-body system, cannot 
be implemented in a straightforward way in our model.  

We have shown here that by using data parallel 
paradigm and shared memory computer systems, relatively 
large particle ensembles can be modeled by using nowadays 
multi-core processors and, possibly, future multiple-
processor CPUs. We expect that just technological progress 

Figure 7 The speed-ups obtained for the main procedures of the tumor model during simulation of 106 particle ensembles on 
two test machines. 



simultaneously with the model improvements will allow for 
increasing of both the sizes of tumors simulated and the 
precision of the results obtained.  

We are working now on creating an efficient parallel 
platform integrating, apart from multi-core CPUs, the 
modern GPU processors, to provide flexible and fast 
simulation tool for oncologists, which could be used on 
small but strong stand-alone workstations. 
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